Responsable : FAYOLLE Sébastien Clé : V6.05.112 Révision

bbf674c73135

Date: 11/09/2015 Page: 1/11

# SSNS112 – Essai de compression et traction alternée d'un poteau de béton armé

#### Résumé:

L'objectif de ce test est de valider la réponse uniaxiale alternée d'une poutre de béton armé, sur la base d'essais expérimentaux, modélisée par les lois :

- GLRC\_DM, [R7.01.32], I oi de béton armé généralisée utilisée avec des éléments DKTG;
- MAZARS\_GC, [R5.03.09], I oi de béton 1D, associée à une loi non-linéaire pour l'acier VMIS\_CINE\_GC sur un modèle de poutre multi-fibre POU D EM;
- DHRC, [R7.01.37], lo i de béton armé homogénéisée utilisée avec des éléments DKTG.

Date: 11/09/2015 Page: 2/11 Clé: V6.05.112 Révision Responsable: FAYOLLE Sébastien

bbf674c73135

#### Problème de référence

#### 1.1 Géométrie

On considère un poteau en béton armé de longueur 0.7m, selon l'axe Ox, de section carrée de hauteur et largeur égale à 0.15 m.



Figure 1: section du poteau en béton armé.

Les armatures longitudinales sont quatre HA14.

Les armatures transversales ne sont pas prises en compte dans les modélisations ci-après.

Pour la modélisation A, on utilise deux lits d'armatures X et Y de  $2.053 ext{ } 10^{-3} ext{ } m^2/m$ .

Pour la modélisation B, on utilise une seule fibre d'acier de section  $6.15 \, mm^2$ .

#### 1.2 Propriétés du matériau

La loi de comportement de GLRC DM a les paramètres suivants pour le béton :

- Module de Young : E = 28500 MPa
- Coefficient de Poisson : v = 0.2
- Contrainte maximale en compression :  $\sigma_c = 25 MPa$
- Déformation au pic en compression :  $\epsilon_c = 2,25$ .  $10^{-3}$
- Contrainte maximale en traction :  $\sigma_t = 2.94 \, MPa$

Les paramètres pour l'acier sont :

- Module de Young : E = 195000 MPa
- Coefficient de Poisson : y = 0.3
- Limite d'élasticité :  $\sigma_v = 610 \, MPa$
- Module tangent (pente plastique) :  $E_t = 19.5 MPa$

On utilise l'opérateur DEFI GLRC pour l'obtention des paramètres de la loi GLRC DM. La contrainte du béton a été réduite à  $\sigma_t = 1.6 \, MPa$ . De plus, on fixe également les paramètres  $\gamma_c = 0.35$  et  $\alpha_{c}$  = 60 pour le comportement non-linéaire en compression.

Le module élastique équivalent en membrane, cf. [R7.01.32], vaut avec ces données matériaux :  $E_{eq}^m = 34021.0 \, MPa$ , soit une raideur membranaire selon la direction  $Ox : E_{eq}^m * S = 765.393 \, MN$ .

Fascicule v6.05: Statique non linéaire des plaques et des coques Manuel de validation

Titre : SSNS112 – Essai de compression et traction d'un po[...]
Responsable : FAYOLLE Sébastien

Date : 11/09/2015 Page : 3/11 Clé : V6.05.112 Révision

bbf674c73135

L'opérateur DEFI\_MATER\_GC a été utilisé pour déterminer les paramètres des lois MAZARS\_GC et VMIS\_CINE\_GC.

# 1.3 Conditions aux limites et chargements

Une extrémité de la poutre, bord A , est bloquée et on impose à l'autre extrémité, bord B , un effort réparti de résultante  $FX = 1 \, kN$  suivant la direction X .



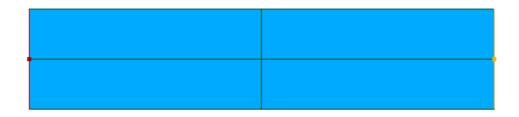





Figure 2: section du poteau en béton armé.

Les cycles de chargement sont définis par :

| t    | Coefficient multiplicateur sur la force $FX$ |  |  |
|------|----------------------------------------------|--|--|
| 0,0  | 0,0                                          |  |  |
| 1,0  | -250                                         |  |  |
| 3,0  | 55                                           |  |  |
| 5,0  | -365                                         |  |  |
| 7,0  | 176                                          |  |  |
| 9,0  | -490                                         |  |  |
| 11,0 | 298                                          |  |  |
| 13,0 | -675                                         |  |  |
| 15,0 | 368                                          |  |  |
| 17,0 | -790                                         |  |  |
| 19,0 | 376                                          |  |  |

#### 1.4 Conditions initiales

Néant.

Date: 11/09/2015 Page: 4/11 Responsable: FAYOLLE Sébastien Clé: V6.05.112 Révision

bbf674c73135

#### 2 Solution de référence

La solution de référence est donnée par des résultats expérimentaux, acquis sur l'essai nommé essai QJ5TC, fournis dans [1]. Sur la base des cycles force - déformation mesurée en moyenne sur le poteau, on identifie, cf. Figure 1:

- une gamme de déformations comprises entre -0,002 et 0,003, c'est-à-dire ne provoquant pas de déformations plastiques générales des aciers au vu des caractéristiques de l'acier, sauf potentiellement localement au passage des fissures,
- une raideur axiale équivalente élastique de 743,7 MN,
- une raideur axiale équivalente post-endommagement en traction de  $120,1\,MN$ , soit un rapport entre les deux de 0.161.

#### 2.1 Références bibliographiques

[1] BENMANSOUR M.B. Modélisation du comportement cyclique alterné du béton armé. Application à divers essais statiques de poteaux. Thèse de Doctorat de l'École Nationale des Ponts et Chaussés. 6 janvier 1997.

Responsable : FAYOLLE Sébastien

Date : 11/09/2015 Page : 5/11 Clé : V6.05.112 Révision

bbf674c73135

# 3 Modélisation A

## 3.1 Caractéristiques de la modélisation

On utilise une modélisation DKTG. La loi de comportement est GLRC DM.

## 3.2 Caractéristiques du maillage

Le maillage contient 4 éléments de type QUAD4.



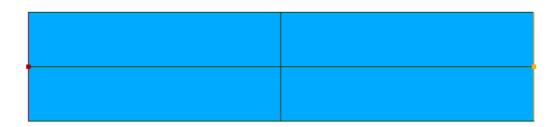





Figure 3: Maillage modélisation A.

#### 3.3 Grandeurs testées et résultats

On teste le déplacement DX du nœud BB situé au centre du bord B .

| Identification | Type de référence | Valeur de référence | Tolérance |
|----------------|-------------------|---------------------|-----------|
| Instant 1,0    | 'SOURCE_EXTERNE'  | -2.436805E-4        | 4%        |
| Instant 3,0    | 'SOURCE_EXTERNE'  | 1.689212E-3         | 40%       |
| Instant 5,0    | 'SOURCE_EXTERNE'  | -3.891909E-4        | 1%        |
| Instant 7,0    | 'SOURCE_EXTERNE'  | 9.398004E-4         | 20%       |
| Instant 9,0    | 'SOURCE_EXTERNE'  | -5.599223E-4        | 25%       |
| Instant 11,0   | 'SOURCE_EXTERNE'  | 1.5470623E-3        | 3%        |
| Instant 13,0   | 'SOURCE_EXTERNE'  | -1.1283811E-3       | 5%        |
| Instant 15,0   | 'SOURCE_EXTERNE'  | 1.9670126E-3        | 1%        |
| Instant 17,0   | 'SOURCE_EXTERNE'  | -1.3747783E-3       | 8%        |
| Instant 19,0   | 'SOURCE_EXTERNE'  | 1.9887658E-3        | 2.5%      |

Responsable : FAYOLLE Sébastien

Date : 11/09/2015 Page : 6/11 Clé : V6.05.112 Révision

bbf674c73135

La réponse axiale de la poutre et les résultats expérimentaux sont présentés Figure 4.

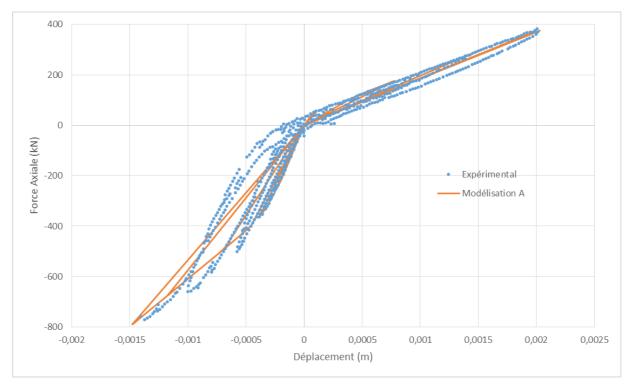



Figure 4 : réponse de la modélisation A

Responsable : FAYOLLE Sébastien Clé

Date : 11/09/2015 Page : 7/11 Clé : V6.05.112 Révision

bbf674c73135

### 4 Modélisation B

# 4.1 Caractéristiques de la modélisation

On utilise une modélisation POU\_D\_EM. La loi de comportement des fibres béton est MAZARS\_GC. La loi de comportement des fibres acier est VMIS CINE GC.

# 4.2 Caractéristiques du maillage

Le maillage contient un élément de type SEG2. La section de la poutre est composée d'un fibre de béton et d'une fibre d'acier.

#### 4.3 Grandeurs testées et résultats

On teste le déplacement du nœud B .

| Identification | Type de référence | Valeur de référence | Tolérance |
|----------------|-------------------|---------------------|-----------|
| Instant 1,0    | 'SOURCE_EXTERNE'  | -2.436805E-4        | 5%        |
| Instant 3,0    | 'SOURCE_EXTERNE'  | 1.689212E-3         | 30%       |
| Instant 5,0    | 'SOURCE_EXTERNE'  | -3.891909E-4        | 5%        |
| Instant 7,0    | 'SOURCE_EXTERNE'  | 9.398004E-4         | 2%        |
| Instant 9,0    | 'SOURCE_EXTERNE'  | -5.599223E-4        | 9%        |
| Instant 11,0   | 'SOURCE_EXTERNE'  | 1.5470623E-3        | 6%        |
| Instant 13,0   | 'SOURCE_EXTERNE'  | -1.1283811E-3       | 10%       |
| Instant 15,0   | 'SOURCE_EXTERNE'  | 1.9670126E-3        | 4%        |
| Instant 17,0   | 'SOURCE_EXTERNE'  | -1.3747783E-3       | 5%        |
| Instant 19,0   | 'SOURCE_EXTERNE'  | 1.9887658E-3        | 6%        |

Responsable : FAYOLLE Sébastien

Date : 11/09/2015 Page : 8/11 Clé : V6.05.112 Révision

Révision bbf674c73135

La réponse axiale de la poutre et les résultats expérimentaux sont présentés Figure 5.

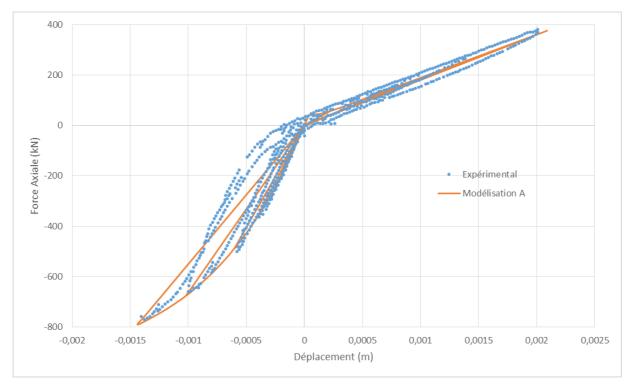



Figure 5 : réponse de la modélisation B

Responsable : FAYOLLE Sébastien

Date : 11/09/2015 Page : 9/11 Clé : V6.05.112 Révision

bbf674c73135

# 5 Modélisation C

## 5.1 Caractéristiques de la modélisation

On utilise une modélisation DKTG. La loi de comportement est DHRC.

# 5.2 Caractéristiques du maillage

Le maillage contient 4 éléments de type QUAD4.



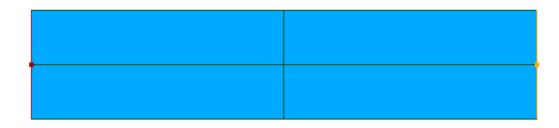





Figure 6 : Maillage modélisation C.

#### 5.3 Grandeurs testées et résultats

On teste le déplacement DX du nœud BB situé au centre du bord B .

| Identification | Type de référence | Valeur de référence | Tolérance |
|----------------|-------------------|---------------------|-----------|
| Instant 1,0    | 'SOURCE_EXTERNE'  | -2.436805E-4        | 4%        |
| Instant 3,0    | 'SOURCE_EXTERNE'  | 1.689212E-3         | 70%       |
| Instant 5,0    | 'SOURCE_EXTERNE'  | -3.891909E-4        | 12%       |
| Instant 7,0    | 'SOURCE_EXTERNE'  | 9.398004E-4         | 25%       |
| Instant 9,0    | 'SOURCE_EXTERNE'  | -5.599223E-4        | 25%       |
| Instant 11,0   | 'SOURCE_EXTERNE'  | 1.5470623E-3        | 7%        |
| Instant 13,0   | 'SOURCE_EXTERNE'  | -1.1283811E-3       | 2%        |
| Instant 15,0   | 'SOURCE_EXTERNE'  | 1.9670126E-3        | 2%        |
| Instant 17,0   | 'SOURCE_EXTERNE'  | -1.3747783E-3       | 0.1%      |
| Instant 19,0   | 'SOURCE_EXTERNE'  | 1.9887658E-3        | 3%        |

Responsable: FAYOLLE Sébastien

Date : 11/09/2015 Page : 10/11 Clé : V6.05.112 Révision

Révision bbf674c73135

La réponse axiale de la poutre et les résultats expérimentaux sont présentés Figure 7.

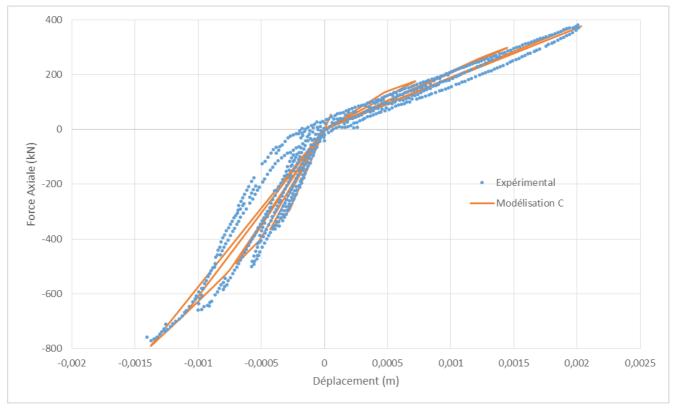



Figure 7: réponse de la modélisation C

Responsable : FAYOLLE Sébastien

Date: 11/09/2015 Page: 11/11 Clé: V6.05.112 Révision

Révision bbf674c73135

# 6 Synthèse des résultats

Les résultats des différentes modélisations sont comparées aux mesures expérimentales [1]. Tous les modèles permettent de représenter de manière satisfaisante le comportement dissymétrique de la poutre en traction et compression. Les raideurs élastiques et post-élastiques sont correctement reproduites. Les boucles d'hystérésis sont moins amples car les modèles de comportement ne représentent pas tous les mécanismes dissipatifs du matériau béton armé.