

Date : 04/05/2018 Page : 1/36 Clé : V6.04.512 Révision : 772a55199c05

Version

default

SSNV512 – Bloc découpé par une fissure verticale se branchant entre 2 fissures horizontales avec X-FEM

Résumé :

Ce test permet de valider l'approche jonction avec X-FEM dans le cas où une fissure se branche sur 2 fissures distinctes. Il s'agit d'un cas test où l'on introduit trois fissures. Les deux premières fissures sont horizontales. La troisième fissure verticale, se branche sur les deux premières via le mot clé JONCTION de l'opérateur DEFI FISS XFEM. On teste l'approche avec et sans contact.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[…] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 2/36 Clé : V6.04.512 Révision 772a55199c05

1 Problème de référence

1.1 Géométrie

La structure est un carré sain dans lequel on introduit trois interfaces, en rouge sur la figure 1.1-a. Deux interfaces sont horizontales. La troisième interface, verticale, est définie entre les deux premières et se branche sur celles-ci. Les dimensions de la structure ainsi que la position des interfaces sont données sur la figure 1.1-a et s'expriment en mètres [m].

Figure 1.1-a : Géométrie de la structure, position des interfaces et numérotation des zones utilisées pour tester l'écart entre les déplacements calculés et les déplacements analytiques.

1.2 Propriétés du matériau

Le matériau a uncomportement élastique isotrope dont les propriétés sont les suivantes:: Module d'Young : 100 MPaCoefficient de poisson : 0.3

1.3 Conditions aux limites et chargements

Dans le cas sans contact (modélisations A à E), on applique des conditions en déplacement sur les bords gauche et droit de la structure, de manière à ce que chacune des 4 zones formées par les interfaces ait un déplacement différent des autres selon X. Ce chargement est représenté figure 1.3-a. On bloque les déplacements en Y (et en Z pour les modélisations 3D) sur ces mêmes bords.

Code_Aster	Versio defai	on ult
Titre : SSNV512 – Bloc découpé par une fissure verticale s[]	Date : 04/05/2018 Page : 3/36	
Responsable : COLOMBO Daniele	Clé : V6.04.512 Révision	:

12 Révision : 772a55199c05

Dans le cas du contact (modélisations F à J), on impose des conditions de rouleau sur les bords gauche et bas, on applique la pression en escalier de la figure 1.3-b sur le bord droit et une pression uniforme sur le bord du haut. Ce chargement est représenté figure 1.3-c. Chaque bloc est alors compressé de manière uniforme selon X et Y. Pour les modélisations 3D, une condition de rouleau est imposée en Z=0.

Figure 1.3-b : Pression imposé selon Y sur le bord droit, (en [MPa]).

Figure 1.3-c : Illustration des conditions aux limites et des chargements, cas avec contact.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele
 Date : 04/05/2018
 Page : 4/36

 Clé : V6.04.512
 Révision : 772a55199c05

Version

2 Solution de référence

Soit $\Omega = [-5,+5] \times [-5,+5]$ le domaine occupé par le solide, dans le plan (X,Y). Le domaine Ω est partitionné en $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \Omega_4$, où on a posé :

$$\begin{split} \Omega_1 &= [-5,0[\times]-2,+2[,\\ \Omega_2 &= [-5,+5]\times]+2,+5],\\ \Omega_3 &=]0,+5]\times]-2,+2[,\\ \Omega_4 &= [-5,+5]\times [-5,-2[. \end{split}$$

2.1 Cas sans contact

Sans contact, chaque zone doit subir un mouvement de corps rigide correspondant à la condition limite imposée sur son bord (droit ou gauche).

L'énergie de la structure est donc :

 $E^e = 0.$

Le champ de déplacement solution analytique est :

$$\boldsymbol{u} = \boldsymbol{u}_x(x, y) \boldsymbol{e}_x,$$

avec :

$$u_{x}(x, y) = \begin{cases} -\frac{1}{4} \text{ pour } (x, y) \in [-5, 0] \times]-2, +2[, \\ -\frac{1}{2} \text{ pour } (x, y) \in [-5, +5] \times]+2, +5], \\ +\frac{3}{4} \text{ pour } (x, y)]0, +5] \times]-2, +2[, \\ +1 \text{ pour } (x, y) \in [-5, +5] \times [-5, -2[, -2]], \end{cases}$$

La norme L^2 du déplacement est définie par :

$$\|\boldsymbol{u}\|_{L^2}^2 = \int_{\Omega} \|\boldsymbol{u}\|^2 d \Omega.$$

On a donc :

$$\|\boldsymbol{u}\|_{L^{2}}^{2} = \frac{1}{16} |\Omega_{1}| + \frac{1}{4} |\Omega_{2}| + \frac{9}{16} |\Omega_{3}| + |\Omega_{4}|.$$

On a :

$$|\Omega_1|=20 \text{ m}^2$$

 $|\Omega_2|=30 \text{ m}^2$
 $|\Omega_3|=20 \text{ m}^2$
 $|\Omega_4|=30 \text{ m}^2$

Manuel de validation

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele

D'où :

$$\|\boldsymbol{u}\|_{L^2}^2 = \frac{1}{16} 20 + \frac{1}{4} 30 + \frac{9}{16} 20 + 30 = 50.$$

Soit :

$$\|\boldsymbol{u}\|_{L^2} = \sqrt{50} \approx 7,071067812 \text{ m}^2$$

2.2 Cas avec contact

Soit :

$$p_x(y) = \begin{cases} 1 \text{ MPa pour } y \in [-5, -2[\\ 2 \text{ MPa pour } y \in [-2, +2[\\ 3 \text{ MPa pour } y \in]+2, +5] \end{cases} \text{ et } p_y = 1 \text{ MPa}.$$

On a donc par définition :

 $\begin{array}{l} p_x(y) = 2, \text{ dans } \Omega_1 \cup \Omega_{3,} \\ p_x(y) = 3, \text{ dans } \Omega_{2,} \\ p_x(y) = 1, \text{ dans } \Omega_{4,} \end{array}$ éq 2.2-1

2.2.1 Cas des déformations planes

Le tenseur des contraintes solution analytique est :

$$\boldsymbol{\sigma} = -p_x(y)\boldsymbol{e}_x \otimes \boldsymbol{e}_x - p_y \boldsymbol{e}_y \otimes \boldsymbol{e}_y - \boldsymbol{\nu}(p_x(y) + p_y)\boldsymbol{e}_z \otimes \boldsymbol{e}_z$$

On a :

$$tr(\mathbf{\sigma}) = -(1+\mathbf{v})(p_x(y)+p_y).$$

Le tenseur des déformations est obtenu en appliquant la loi de Hooke :

$$\boldsymbol{\varepsilon} = \frac{1+\boldsymbol{\nu}}{E}\boldsymbol{\sigma} - \frac{\boldsymbol{\nu}}{E} tr(\boldsymbol{\sigma})\boldsymbol{I},$$

où *I* est le tenseur identité. On a donc :

$$\boldsymbol{\varepsilon} = -\left(\frac{(1+\nu)(1-\nu)p_x(y)}{E} - \frac{\nu(1+\nu)p_y}{E}\right)\boldsymbol{e}_x \otimes \boldsymbol{e}_x \\ -\left(\frac{(1+\nu)(1-\nu)p_y}{E} - \frac{\nu(1+\nu)p_x(y)}{E}\right)\boldsymbol{e}_y \otimes \boldsymbol{e}_y$$

On a donc :

$$\sigma : \varepsilon = \frac{(1+\nu)(1-\nu)}{E} (p_x(y))^2 - 2\frac{\nu(1+\nu)}{E} p_x(y) p_y + \frac{(1+\nu)(1-\nu)}{E} p_y^2.$$

Manuel de validation

Version default

Date : 04/05/2018 Page : 5/36 Clé : V6.04.512 Révision : 772a55199c05

Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele

D'où :

$$E^{e} = \frac{1}{2} \frac{1+\nu}{E} \int_{\Omega} \left[(1-\nu) (p_{x}(y))^{2} - 2\nu p_{x}(y) p_{y} + (1-\nu) p_{y}^{2} \right] d\Omega$$

On a donc d'après l'équation 2.2-1 :

$$E^{e} = \frac{1}{2} \frac{1+\nu}{E} \Big[\int_{\Omega_{1} \cup \Omega_{3}} [4(1-\nu) - 4\nu + (1-\nu)] d\Omega + \int_{\Omega_{2}} [9(1-\nu) - 6\nu + (1-\nu)] d\Omega + \int_{\Omega_{4}} [(1-\nu) - 2\nu + (1-\nu)] d\Omega \Big].$$

Soit :

$$E^{e} = \frac{1}{2} \frac{1 + \nu}{E} \left[(5 - 9\nu) (|\Omega_{1}| + |\Omega_{3}|) + (10 - 16\nu) |\Omega_{2}| + (2 - 4\nu) |\Omega_{4}| \right].$$

On a donc :

$$E^{e} = \frac{1}{2} \frac{1+\nu}{E} \Big[40(5-9\nu) + 30(10-16\nu) + 30(2-4\nu) |\Omega_{4}| \Big].$$

Et finalement :

1

$$E^{e} = \frac{40(1+\nu)(7-12\nu)}{E} = 1,768 \text{ MJ} \times \text{m}^{-1}.$$

Le champ de déplacement analytique $u = u_x e_x + u_y e_y$ s'obtient en intégrant les déformations :

$$u_x = \int_{-5}^{x} \varepsilon_{xx} dx,$$

$$u_y = \int_{-5}^{y} \varepsilon_{yy} dy,$$

car les conditions limites appliquées sont $u_x(x=-5)=0$ et $u_y(y=-5)=0$. Il est à noter que le tenseur des déformations est discontinu. On a en effet :

$$\boldsymbol{\varepsilon} = \begin{cases} -\frac{(1+\nu)(2-3\nu)}{E} \boldsymbol{e}_{x} \otimes \boldsymbol{e}_{x} - \frac{(1+\nu)(1-3\nu)}{E} \boldsymbol{e}_{y} \otimes \boldsymbol{e}_{y}, \text{ dans } [-5,0[\times]-2,+2[\\ -\frac{(1+\nu)(3-4\nu)}{E} \boldsymbol{e}_{x} \otimes \boldsymbol{e}_{x} - \frac{(1+\nu)(1-4\nu)}{E} \boldsymbol{e}_{y} \otimes \boldsymbol{e}_{y}, \text{ dans } [-5,+5]\times]+2,+5] \\ -\frac{(1+\nu)(2-3\nu)}{E} \boldsymbol{e}_{x} \otimes \boldsymbol{e}_{x} - \frac{(1+\nu)(1-3\nu)}{E} \boldsymbol{e}_{y} \otimes \boldsymbol{e}_{y}, \text{ dans }]0,+5]\times]-2,+2[\\ -\frac{(1+\nu)(1-2\nu)}{E} \boldsymbol{e}_{x} \otimes \boldsymbol{e}_{x} - \frac{(1+\nu)(1-2\nu)}{E} \boldsymbol{e}_{y} \otimes \boldsymbol{e}_{y}, \text{ dans }]0,+5]\times]-2,+2[\end{cases}$$

On remarque que le champ de déformations est discontinu au travers des droites d'équation y=-2 et y=+2. Il est donc nécessaire de distinguer les cas selon le domaine sur l e quel on intègre pour expliciter la valeur des intégrales.

Manuel de validation

Version default

Date : 04/05/2018 Page : 6/36

Révision 772a55199c05

Clé : V6.04.512

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele

Date : 04/05/2018 Page : 7/36 Clé : V6.04.512 Révision : 772a55199c05

$$u_{x} = \begin{cases} \int_{-5}^{x} \left[-\frac{(1+\nu)(2-3\nu)}{E} \right] dx, \text{ dans } [-5,0[\times]-2,+2[\\ \int_{-5}^{x} \left[-\frac{(1+\nu)(3-4\nu)}{E} \right] dx, \text{ dans } [-5,+5]\times]+2,+5] \\ \int_{-5}^{0} \left[-\frac{(1+\nu)(2-3\nu)}{E} \right] dx + \int_{0}^{x} \left[-\frac{(1+\nu)(2-3\nu)}{E} \right] dx, \text{ dans }]0,+5]\times]-2,+2[\\ \int_{-5}^{0} \left[-\frac{(1+\nu)(1-2\nu)}{E} \right] dx, \text{ dans } [-5,+5]\times[-5,-2[$$

et

$$u_{y} = \begin{cases} \int_{-5}^{-2} \left[-\frac{(1+\nu)(1-2\nu)}{E} \right] dy + \int_{-2}^{y} \left[-\frac{(1+\nu)(1-3\nu)}{E} \right] dy, \text{ dans } [-5,0[\times]-2,+2[\\ \int_{-5}^{-2} \left[-\frac{(1+\nu)(1-2\nu)}{E} \right] dy + \int_{-2}^{+2} \left[-\frac{(1+\nu)(1-3\nu)}{E} \right] dy \\ + \int_{+2}^{y} \left[-\frac{(1+\nu)(1-4\nu)}{E} \right] dy, \text{ dans } [-5,+5]\times]+2,+5] \\ \int_{-5}^{-2} \left[-\frac{(1+\nu)(1-2\nu)}{E} \right] dy + \int_{-2}^{y} \left[-\frac{(1+\nu)(1-3\nu)}{E} \right] dy, \text{ dans }]0,+5]\times]-2,+2[\\ \int_{-5}^{y} \left[-\frac{(1+\nu)(1-2\nu)}{E} \right] dy, \text{ dans } [-5,+5]\times[-5,-2[$$

Soit :

$$u_{x} = \begin{cases} -\frac{(1+\nu)(2-3\nu)}{E}x - 5\frac{(1+\nu)(2-3\nu)}{E}, \text{ dans } [-5,0[\times]-2,+2[\\ -\frac{(1+\nu)(3-4\nu)}{E}x - 5\frac{(1+\nu)(3-4\nu)}{E}, \text{ dans } [-5,+5]\times]+2,+5]\\ -\frac{(1+\nu)(2-3\nu)}{E}x - 5\frac{(1+\nu)(2-3\nu)}{E}, \text{ dans }]0,+5]\times]-2,+2[\\ -\frac{(1+\nu)(1-2\nu)}{E}x - 5\frac{(1+\nu)(1-2\nu)}{E}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{(1+\nu)(1-2\nu)}{E}x - 5\frac{(1+\nu)(1-2\nu)}{E}x - 5\frac{(1+\nu)(1-2\nu)}{E}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{(1+\nu)(1-2\nu)}{E}x - 5\frac{(1+\nu)(1-2\nu)}{E}x - 5\frac{(1+\nu)(1-2\nu)}{E}$$

Manuel de validation

,

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 8/36 Clé : V6.04.512 Révision : 772a55199c05

Version

default

et :

$$u_{y} = \begin{cases} -\frac{(1+\nu)(1-3\nu)}{E}y - \frac{(1+\nu)(5-12\nu)}{E}, \text{ dans } [-5,0[\times]-2,+2[\\ -\frac{(1+\nu)(1-4\nu)}{E}y - 5\frac{(1+\nu)(1-2\nu)}{E}, \text{ dans } [-5,+5]\times]+2,+5]\\ -\frac{(1+\nu)(1-3\nu)}{E}y - \frac{(1+\nu)(5-12\nu)}{E}, \text{ dans }]0,+5]\times]-2,+2[\\ -\frac{(1+\nu)(1-2\nu)}{E}y - 5\frac{(1+\nu)(1-2\nu)}{E}, \text{ dans } [-5,+5]\times[-5,-2[\\ \end{array} \right]$$

Il est à noter que le champ de déplacement n'est pas continu. Le champ étant solution d'un problème de contact, la partie normale aux interfaces du déplacement est continue et on a :

$$u_{y}(y=-2^{-})=u_{y}(y=-2^{+})=-3\frac{(1+v)(1-2v)}{E},$$

et :

$$u_{y}(y=+2^{-})=u_{y}(y=+2^{+})=-\frac{(1+v)(7-18v)}{E}$$

On a également :

$$u_x(x=0) = u_x(x=0) = -5 \frac{(1+v)(2-3v)}{E}$$
, pour $y \in]-2,+2[$.

En revanche, la partie tangentielle du déplacement peut être discontinue et on a :

$$u_x(y=-2^+)-u_x(y=-2^-)=-\frac{(x+5)(1+\nu)(1-\nu)}{E}$$
, pour $x \in [-5,0[,$

et :

$$u_x(y=+2^+)-u_x(y=+2^-)=-\frac{(x+5)(1+v)(1-v)}{E}$$
, pour $x\in [-5,0[$,

alors que :

$$u_y(x=0^+)-u_y(x=0^-)=0$$
, pour $y\in]-2,+2[$

Le calcul de l'intégrale du carré de la norme du déplacement doit donc encore une fois utiliser une partition du domaine conforme aux interfaces d'équation y=-2 et y=+2.

On a donc :

$$\int_{\Omega} \|\boldsymbol{u}\|^2 d\Omega = \int_{\Omega_1 \cup \Omega_3} \left(u_x^2 + u_y^2 \right) d\Omega + \int_{\Omega_2} \left(u_x^2 + u_y^2 \right) d\Omega + \int_{\Omega_4} \left(u_x^2 + u_y^2 \right) d\Omega.$$

On a finalement :

$$\int_{\Omega} \|\boldsymbol{u}\|^2 d\Omega = \frac{20 \left(8436 v^4 + 7587 v^3 - 7334 v^2 - 3685 v + 2800\right)}{3 E^2}.$$

Manuel de validation

Fascicule v6.04: Statique non linéaire des structures volumiques

Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Date : 04/05/2018 Page : 9/36 Clé : V6.04.512 Révision : 772a55199c05

D'où :

Code Aster

$$\|\boldsymbol{u}\|_{L^{2}} = \frac{1}{E} \sqrt{\frac{20(8436 v^{4} + 7587 v^{3} - 7334 v^{2} - 3685 v + 2800)}{3}} \approx 0,933673961652 \text{ m}^{2}$$

2.2.2 Cas des contraintes planes

Le tenseur des contraintes solution analytique est :

$$\boldsymbol{\sigma} = -p_x(y)\boldsymbol{e}_x \otimes \boldsymbol{e}_x - p_y \boldsymbol{e}_y \otimes \boldsymbol{e}_y \qquad \text{éq 2.2-4}$$

On a :

$$tr(\mathbf{\sigma}) = -(p_x(y) + p_y).$$

Le tenseur des déformations est obtenu en appliquant la loi de Hooke et on a :

$$\mathbf{\varepsilon} = \left[-\frac{1+\nu}{E} p_x(y) + \frac{\nu}{E} (p_x(y) + p_y) \right] \mathbf{e}_x \otimes \mathbf{e}_x + \left[-\frac{1+\nu}{E} p_y + \frac{\nu}{E} (p_x(y) + p_y) \right] \mathbf{e}_y \otimes \mathbf{e}_y \\ + \frac{\nu}{E} (p_x(y) + p_y) \mathbf{e}_z \otimes \mathbf{e}_z$$

Et finalement :

$$\boldsymbol{\varepsilon} = -\left(\frac{p_x(y)}{E} - \boldsymbol{v}\frac{p_y}{E}\right)\boldsymbol{e}_x \otimes \boldsymbol{e}_x - \left(\frac{p_y}{E} - \boldsymbol{v}\frac{p_x(y)}{E}\right)\boldsymbol{e}_y \otimes \boldsymbol{e}_y + \frac{\boldsymbol{v}}{E}\left(p_x(y) + p_y\right)\boldsymbol{e}_z \otimes \boldsymbol{e}_z$$

L'énergie de la structure est :

$$E^e = \frac{1}{2} \int_{\Omega} \boldsymbol{\sigma} : \boldsymbol{\varepsilon} \, d\,\Omega$$

On a :

$$\boldsymbol{\sigma} : \boldsymbol{\varepsilon} = \boldsymbol{p}_{x}(\boldsymbol{y}) \left(\frac{\boldsymbol{p}_{x}(\boldsymbol{y})}{E} - \boldsymbol{v} \frac{\boldsymbol{p}_{y}}{E} \right) + \boldsymbol{p}_{y}(\boldsymbol{x}) \left(\frac{\boldsymbol{p}_{y}}{E} - \boldsymbol{v} \frac{\boldsymbol{p}_{x}(\boldsymbol{y})}{E} \right)$$

Soit :

$$\boldsymbol{\sigma} : \boldsymbol{\varepsilon} = \frac{(p_x(y))^2}{E} - 2\nu \frac{p_x(y)p_y}{E} + \frac{p_y^2}{E}$$

On a donc :

$$E^{e} = \frac{1}{2} \frac{1}{E} \int_{\Omega} \left[(p_{x}(y))^{2} - 2\nu p_{x}(y) p_{y} + p_{y}^{2} \right] d\Omega$$

D'où d'après l'équation 2.2-1 :

$$E^{e} = \frac{1}{2} \frac{1}{E} \Big[\int_{\Omega_{1} \cup \Omega_{3}} (4 - 4\nu + 1) d\Omega + \int_{\Omega_{2}} (9 - 6\nu + 1) d\Omega + \int_{\Omega_{4}} (1 - 2\nu + 1) d\Omega \Big].$$

Manuel de validation

Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Version

Date : 04/05/2018 Page : 10/36 Clé : V6.04.512 Révision : 772a55199c05

Soit :

$$E^{e} = \frac{1}{2} \frac{1}{E} \left[(5 - 4\nu) (|\Omega_{1}| + |\Omega_{3}|) + (10 - 6\nu) |\Omega_{2}| + (2 - 2\nu) |\Omega_{4}| \right].$$

On a donc :

$$E^{e} = \frac{1}{2} \frac{1}{E} [40(5-4\nu) + 30(10-6\nu) + 30(2-2\nu)].$$

Et finalement :

$$E^{e} = \frac{1}{E} 40(7-5v) = 2,2 \text{ MJ} \times \text{m}^{-1}.$$
 éq 2.2-5

Le champ de déplacement analytique $u = u_x e_x + u_y e_y$ s'obtient en intégrant les déformations :

$$u_x = \int_{-5}^{x} \varepsilon_{xx} dx,$$

$$u_y = \int_{-5}^{y} \varepsilon_{yy} dy,$$

car les conditions limites appliquées sont $u_x(x=-5)=0$ et $u_y(y=-5)=0$. Il est à noter que le tenseur des déformations est discontinu. On a en effet :

$$\boldsymbol{\varepsilon} = \begin{cases} -\frac{2-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-2\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 3\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,0[\times]-2,+2[\\ -\frac{3-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-3\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 4\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times]+2,+5]\\ -\frac{2-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-2\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 3\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans }]0,+5]\times]-2,+2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x}, \text{ dans } [-5,+5]\times[-5,-2[\\ -\frac{\nu}{E$$

On remarque que le champ de déformations est discontinu au travers des droites d'équation y=-2 et y=+2. Il est donc nécessaire de distinguer les cas selon le domaine sur l e quel on intègre pour expliciter la valeur des intégrales.

On a ainsi :

$$u_{x} = \begin{cases} \int_{-5}^{x} \left[-\frac{2-\nu}{E} \right] dx, \text{ dans } [-5,0[\times]-2,+2[\\ \int_{-5}^{x} \left[-\frac{3-\nu}{E} \right] dx, \text{ dans } [-5,+5]\times]+2,+5] \\ \int_{-5}^{0} \left[-\frac{2-\nu}{E} \right] dx + \int_{0}^{x} \left[-\frac{2-\nu}{E} \right] dx, \text{ dans }]0,+5]\times]-2,+2[\\ \int_{-5}^{0} \left[-\frac{1-\nu}{E} \right] dx, \text{ dans } [-5,+5]\times[-5,-2[\\ \end{bmatrix} \end{cases}$$

Manuel de validation

Fascicule v6.04: Statique non linéaire des structures volumiques

1

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele

Date : 04/05/2018 Page : 11/36 Clé : V6.04.512 Révision : 772a55199c05

et

$$u_{y} = \begin{pmatrix} \int_{-5}^{-2} \left[-\frac{1-\nu}{E} \right] dy + \int_{-2}^{y} \left[-\frac{1-2\nu}{E} \right] dy, \text{ dans } [-5,0[\times]-2,+2[\\ \int_{-5}^{-2} \left[-\frac{1-\nu}{E} \right] dy + \int_{-2}^{+2} \left[-\frac{1-2\nu}{E} \right] dy + \int_{+2}^{y} \left[-\frac{1-3\nu}{E} \right] dy, \text{ dans } [-5,+5]\times]+2,+5] \\ \int_{-5}^{-2} \left[-\frac{1-\nu}{E} \right] dy + \int_{-2}^{y} \left[-\frac{1-2\nu}{E} \right] dy, \text{ dans }]0,+5]\times]-2,+2[\\ \int_{-5}^{y} \left[-\frac{1-\nu}{E} \right] dy, \text{ dans } [-5,+5]\times[-5,-2[$$

Soit :

$$u_{x} = \begin{cases} -\frac{2-\nu}{E}x - 5\frac{2-\nu}{E}, \text{ dans } [-5,0[\times] - 2,+2[\\ -\frac{3-\nu}{E}x - 5\frac{3-\nu}{E}, \text{ dans } [-5,+5]\times] + 2,+5] \\ -\frac{2-\nu}{E}x - 5\frac{2-\nu}{E}, \text{ dans }]0,+5]\times] - 2,+2[\\ -\frac{1-\nu}{E}x - 5\frac{1-\nu}{E}, \text{ dans } [-5,+5]\times[-5,-2[] \end{cases}$$
éq 2.2-7

et :

$$u_{y} = \begin{cases} -\frac{1-2\nu}{E} y - \frac{5-7\nu}{E}, \text{ dans } [-5,0[\times]-2,+2[\\ -\frac{1-3\nu}{E} y - 5\frac{1-\nu}{E}, \text{ dans } [-5,+5]\times]+2,+5] \\ -\frac{1-2\nu}{E} y - \frac{5-7\nu}{E}, \text{ dans }]0,+5]\times]-2,+2[\\ -\frac{1-\nu}{E} y - 5\frac{1-\nu}{E}, \text{ dans } [-5,+5]\times[-5,-2[] \end{cases}$$
éq 2.2-8

Il est à noter que le champ de déplacement n'est pas continu. Le champ étant solution d'un problème de contact, la partie normale aux interfaces du déplacement est continue et on a :

$$u_{y}(y=-2^{-})=u_{y}(y=-2^{+})=-3\frac{1-v}{E},$$

et :

$$u_y(y=+2^-)=u_y(y=+2^+)=-\frac{7-11v}{E}$$

On a également :

Manuel de validation

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 12/36 Clé : V6.04.512 Révision 772a55199c05

Version

default

$$u_x(x=0^{-})=u_x(x=0^{+})=-5\frac{2-v}{E}$$
, pour $y\in]-2,+2[$.

En revanche, la partie tangentielle du déplacement peut être discontinue et on a :

$$u_x(y=-2^+)-u_x(y=-2^-)=-\frac{x+5}{E}$$
, pour $x\in[-5,0[,$

et :

$$u_x(y=+2^+)-u_x(y=+2^-)=-\frac{x+5}{E}$$
, pour $x \in [-5,0[,$

alors que :

$$u_y(x=0^+)-u_y(x=0^-)=0$$
, pour $y\in]-2,+2[$.

Le calcul de l'intégrale du carré de la norme du déplacement doit donc encore une fois utiliser une partition du domaine conforme aux interfaces d'équation y=-2 et y=+2.

On a donc :

$$\int_{\Omega} \|\boldsymbol{u}\|^2 d\Omega = \int_{\Omega_1 \cup \Omega_3} \left(u_x^2 + u_y^2 \right) d\Omega + \int_{\Omega_2} \left(u_x^2 + u_y^2 \right) d\Omega + \int_{\Omega_4} \left(u_x^2 + u_y^2 \right) d\Omega.$$

On a finalement :

$$\int_{\Omega} \|\boldsymbol{u}\|^2 d\Omega = \frac{20(1951 v^2 - 3685 v + 2800)}{3E^2}$$

D'où :

$$\|\boldsymbol{u}\|_{L^2} = \frac{1}{E} \sqrt{\frac{20(1951\nu^2 - 3685\nu + 2800)}{3}} \approx 1,11656914997 \text{ m}^2.$$

2.2.3 Cas 3D

La structure occupe le domaine $\Omega_{3D} = \Omega \times [0, 1]$. Les conditions aux limites du cas 3D sont les mêmes que celles des cas 2D dans le plan (X, Y), une condition de rouleau est imposée en Z=0 et le bord Z=1 est libre de contraintes. Le tenseur des contraintes solution analytique est donc identique au cas des contraintes planes (*cf.* éq 2.2-4) :

$$\boldsymbol{\sigma} = -p_x(y)\boldsymbol{e}_x \otimes \boldsymbol{e}_x - p_y \boldsymbol{e}_y \otimes \boldsymbol{e}_y$$

La densité d'énergie élastique est donc identique à celle du cas 3D. Le solide est d'épaisseur unitaire dans la direction Z. L'expression de l'énergie de la structure est donc identique au cas des contraintes planes, mais les unités sont modifiées. On a alors (*cf.* éq 2.2-5) :

$$E^{e} = \frac{1}{E} 40(7-5v) = 2,2 \text{ MJ} \times \text{m}^{-1}.$$

Manuel de validation

1

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 13/36 Clé : V6.04.512 Révision : 772a55199c05

Le champ de déplacement analytique $u = u_x e_x + u_y e_y + u_z e_z$ s'obtient en intégrant les déformations :

$$u_{x} = \int_{-5}^{x} \varepsilon_{xx} dx,$$

$$u_{y} = \int_{-5}^{y} \varepsilon_{yy} dy,$$

$$u_{z} = \int_{0}^{z} \varepsilon_{zz} dz,$$

car les conditions limites appliquées sont $u_x(x=-5)=0$, $u_y(y=-5)=0$ et $u_z(z=0)=0$.

Il est à noter que le tenseur des déformations est discontinu. On a en effet (cf. éq 2.2-6) :

$$\boldsymbol{\varepsilon} = \begin{cases} -\frac{2-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-2\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 3\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,0[\times]-2,+2[\times[0,1]]] \\ -\frac{3-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-3\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 4\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times]+2,+5[\times[0,1]] \\ -\frac{2-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-2\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 3\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [0,+5]\times]-2,+2[\times[0,1]] \\ -\frac{1-\nu}{E}\boldsymbol{e}_{x}\otimes\boldsymbol{e}_{x} - \frac{1-\nu}{E}\boldsymbol{e}_{y}\otimes\boldsymbol{e}_{y} + 2\frac{\nu}{E}\boldsymbol{e}_{z}\otimes\boldsymbol{e}_{z}, \text{ dans } [-5,+5]\times[-5,-2[\times[0,1]]] \end{cases}$$

On remarque que le champ de déformations est discontinu au travers des droites d'équation y=-2 et y=+2. Il est donc nécessaire de distinguer les cas selon le domaine sur lequel on intègre pour expliciter la valeur des intégrales. Les expressions des composantes u_x et u_y sont identiques au cas des contraintes planes (*cf.* éq 2.2-7 et 2.2-8) et on a pour u_z :

$$u_{z} = \begin{cases} \int_{0}^{1} \frac{3\nu}{E} dz, \text{ dans } [-5,0[\times]-2,+2[\times[0,1]]] \\ \int_{0}^{1} \frac{4\nu}{E} dz, \text{ dans } [-5,+5]\times]+2,+5]\times[0,1]] \\ \int_{0}^{1} \frac{3\nu}{E} dz, \text{ dans }]0,+5]\times]-2,+2[\times[0,1]] \\ \int_{0}^{1} \frac{2\nu}{E} dz, \text{ dans } [-5,+5]\times[-5,-2[\times[0,1]]]. \end{cases}$$

Soit :

Manuel de validation

Fascicule v6.04: Statique non linéaire des structures volumiques

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 14/36 Clé : V6.04.512 Révision : 772a55199c05

Version

default

$$u_{z} = \begin{cases} \frac{3v}{E}z, \text{ dans } [-5,0[\times]-2,+2[\times[0,1]] \\ \frac{4v}{E}z, \text{ dans } [-5,+5]\times]+2,+5]\times[0,1] \\ \frac{3v}{E}z, \text{ dans } [0,+5]\times]-2,+2[\times[0,1]] \\ \frac{2v}{E}z, \text{ dans } [-5,+5]\times[-5,-2[\times[0,1]]] \end{cases}$$
éq 2.2-9

Le calcul de l'intégrale du carré de la norme du déplacement doit donc encore une fois utiliser une partition du domaine conforme aux interfaces d'équation y=-2 et y=+2. On a donc :

$$\int_{\Omega_{3D}} \|\boldsymbol{u}\|^2 d\Omega = \int_{\Omega_1 \times [0,1] \cup \Omega_3 \times [0,1]} \left(u_x^2 + u_y^2 + u_z^2 \right) d\Omega + \int_{\Omega_2 \times [0,1]} \left(u_x^2 + u_y^2 + u_z^2 \right) d\Omega + \int_{\Omega_4 \times [0,1]} \left(u_x^2 + u_y^2 + u_z^2 \right) d\Omega.$$

On a finalement :

$$\int_{\Omega_{3D}} \|\boldsymbol{u}\|^2 d\Omega = \frac{20(1999 \,\nu^2 - 3685 \,\nu + 2800)}{3 \, E^2}.$$

D'où :

$$\|\boldsymbol{u}\|_{L^2} = \frac{1}{E} \sqrt{\frac{20(1999 \nu^2 - 3685 \nu + 2800)}{3}} \approx 1,11785807089 \,\mathrm{m}^{\frac{5}{2}}.$$

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 15/36 Clé : V6.04.512 Révision 772a55199c05

3 Modélisation A

3.1 Caractéristiques de la modélisation

Il s'agit d'une modélisation X-FEM, en déformations planes, D_PLAN. Les interfaces sont définies par des fonctions de niveaux (level sets normales notées LN).

Les équations des fonctions de niveaux pour les deux interfaces horizontales et l'interface verticale sont respectivement les suivantes :

LN1 = Y - 2	éq 3.1-1
LN 2 = Y + 2	éq 3.1-2
LN3 = X	éq 3.1-3

Les deux interfaces horizontales sont définies de manière classique en utilisant l'opérateur $\tt DEFI$ FISS XFEM avec les level sets normales LN1 et LN2 .

L'interface verticale est définie avec la level set normale LN3 dans <code>DEFI_FISS_XFEM</code>. On ajoute dans cet opérateur le mot clé <code>JONCTION</code>. Sous ce mot clé, on donne les 2 interfaces horizontales préalablement définies dans l'opérande <code>FISSURE</code> et un point qui est à la fois en dessous de la première fissure et au dessus de la deuxième dans l'opérande <code>POINT</code> (voir figure 3.1-a). Ce point ne doit pas être nécessairement positionné sur LN3. Dans le cas présent, il peut être n'importe où dans le domaine délimité entre LN1 et LN2.

3.2 Caractéristiques du maillage

Le maillage qui comporte 81 mailles de type QUAD4 est représenté sur la figure 3.2-a. On remarque sur cette figure que certaines mailles sont coupées plusieurs fois. Ce test permet donc de valider le découpage multiple.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele

Version

Figure 3.2-a : Le maillage de la modélisation A.

3.3 Fonctionnalités testées

On teste l'opérateur <code>DEFI_FISS_XFEM</code> dans le cas où l'on veut brancher une fissure sur plusieurs fissures différentes. On utilise le mot clé <code>JONCTION</code> qui permet de définir des branchements de fissures avec <code>X-FEM</code>.

Dans ce cas précis on branche la fissure 3 sur les fissures 1 et 2. On teste aussi l'opérateur MODI_MODELE_XFEM dans le cas de mailles qui sont coupées par plusieurs fissures. Le multi-Heaviside et le multi-stockage des Structures de Données (SD) X-FEM est bien entendu activé.

On teste l'assemblage des degrés de liberté Heaviside au niveau des matrices et des seconds membres des éléments connectés à l'intersection pour l'option COMPORTEMENT dans STAT NON LINE.

On valide aussi le post-traitement $X\mathchar`-FEM$ dans le cas du multi-découpage, avec les opérateurs post mail xfem et post cham xfem .

3.4 Grandeurs testées et résultats

On teste les déplacements au niveau des lèvres des fissures après avoir effectué les opérations de post-traitements relatifs à X-FEM ($POST_MAIL_XFEM$ et $POST_CHAM_XFEM$). Le déplacement DX doit correspondre au chargement imposé de la figure 1.3-a sur chacune des zones et DY doit être nul. On teste les valeurs minimum et maximum sur les lèvres de chacune des zones.

ld	entification		Référence	% tolérance
	DY	MIN	-0.25	1.00E-11
	DA	MAX	-0.25	1.00E-11
	DV	MIN	0	1.00E-11
	DI	MAX	0	1.00E-11
	DY	MIN	-0.5	1.00E-11
DEPZON_2	DA	MAX	-0.5	1.00E-11
	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11
	DX	MIN	0.75	1.00E-11
		MAX	0.75	1.00E-11
	DV	MIN	0	1.00E-11
		MAX	0	1.00E-11
	צח	MIN	0.75	1.00E-11
DEPZON_4	DI	MAX	0.75	1.00E-11
	DV	MIN	0	1.00E-11
		MAX	0	1.00E-11

Manuel de validation

Date : 04/05/2018 Page : 17/36 Clé : V6.04.512 Révision : 772a55199c05

Tableau 3.4-1

La déformée est représentée sur la figure 3.4-a. Le code couleur représente le champ de déplacement.

Figure 3.4-a : Déformée de la structure.

On teste la valeur de E^e produit par l'opérateur POST ERREUR.

Identification	Type de référence	Valeur de référence
Ee	'ANALYTIQUE'	0

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur <code>POST_ERREUR</code>.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	7,071067812	0.1%

3.5 Remarques

On obtient de très bon résultats pour ce test, l'erreur relevée correspondant au résidu numérique.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele
 Date : 04/05/2018
 Page : 18/36

 Clé : V6.04.512
 Révision
 :

 772a55199c05
 :

Version

4 Modélisation B

4.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation A, mais en contraintes planes, C_PLAN. Les jonctions sont construites de la même manière.

4.2 Caractéristiques du maillage

Le maillage qui comporte 176 mailles de type TRIA3 est représenté sur la figure 4.2-a.

Figure 4.2-a : Le maillage de la modélisation B.

4.3 Grandeurs testées et résultats

Les grandeurs testées sont identiques à celles utilisées pour la modélisation A.

Ide	entification		Référence	% tolérance
	DY	MIN	-0.25	1.00E-11
	DA	MAX	-0.25	1.00E-11
	DV	MIN	0	1.00E-11
	DI	MAX	0	1.00E-11
	DV	MIN	-0.5	1.00E-11
	DX	MAX	-0.5	1.00E-11
DEPZON_2	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11
	DX	MIN	0.75	1.00E-11
DEPZON_3		MAX	0.75	1.00E-11
	DY	MIN	0	1.00E-11
	DI	MAX	0	1.00E-11
DEPZON_4	DX	MIN	0.75	1.00E-11
		MAX	0.75	1.00E-11
	DV	MIN	0	1.00E-11
		MAX	0	1.00E-11

Date : 04/05/2018 Page : 19/36 Clé : V6.04.512 Révision : 772a55199c05

La déformée est représentée sur la figure 4.4-a.

Figure 4.4-a : Déformée de la structure.

On teste la valeur de E^e produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence
E e	'ANALYTIQUE'	0

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	7,071067812	0.1%

4.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation A.

Manuel de validation

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 20/36 Clé : V6.04.512 Révision : 772a55199c05

Version

default

5 Modélisation C

5.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation A, mais en 3D. Les jonctions sont construites de la même manière.

5.2 Caractéristiques du maillage

Le maillage qui comporte 81 mailles de type HEXA8 est représenté sur la figure 5.2-a.

Figure 5.2-a : Le maillage de la modélisation C.

5.3 Grandeurs testées et résultats

Les grandeurs testées sont identiques à celles utilisées pour la modélisation A. On ajoute des tests sur ${\tt DZ}$.

lde	entification		Référence	% tolérance
	DY	MIN	-0.25	1.00E-11
	DX	MAX	-0.25	1.00E-11
	DY	MIN	0	1.00E-11
	DI	MAX	0	1.00E-11
	DY	MIN	-0.5	1.00E-11
	DX	MAX	-0.5	1.00E-11
DEPZON_Z	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11
DEPZON_3	DX	MIN	0.75	1.00E-11
		MAX	0.75	1.00E-11
	DY	MIN	0	1.00E-11
	DI	MAX	0	1.00E-11
	DY	MIN	0.75	1.00E-11
DEPZON_4		MAX	0.75	1.00E-11
	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 21/36 Clé : V6.04.512 Révision : 772a55199c05

La déformée est représentée sur la figure 5.4-a.

Figure 5.4-a : Déformée de la structure.

On teste la valeur de E^e produit par l'opérateur POST ERREUR.

Identification	Type de référence	Valeur de référence
E e	'ANALYTIQUE'	0

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	7,071067812	0.1%

5.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation A.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele
 Date : 04/05/2018
 Page : 22/36

 Clé : V6.04.512
 Révision
 1

 772a55199c05
 1
 1

6 Modélisation D

6.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation C.

6.2 Caractéristiques du maillage

Le maillage qui comporte 312 mailles de type TETRA4 est représenté sur la figure 6.2-a.

Figure 6.2-a : Le maillage de la modélisation D.

6.3 Grandeurs testées et résultats

Les grandeurs testées sont identiques à celles utilisées pour la modélisation C.

Identification			Référence	% tolérance
	DV	MIN	-0.25	1.00E-11
	DA	MAX	-0.25	2.00E-11
DEFZON_I	ν	MIN	0	1.00E-11
	DI	MAX	0	1.00E-11
	ν	MIN	-0.5	1.00E-11
	DA	MAX	-0.5	2.00E-11
DEPZON_2	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11
	DX	MIN	0.75	1.00E-11
		MAX	0.75	2.00E-11
DEFZON_3	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11
DEPZON_4	עת	MIN	0.75	1.00E-11
	DX	MAX	0.75	2.00E-11
	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11

Manuel de validation

 default

 Date : 04/05/2018
 Page : 23/36

 Clé : V6.04.512
 Révision : 772a55199c05

Version

La déformée est représentée sur la figure 6.4-a.

Figure 6.4-a : Déformée de la structure.

On teste la valeur de E^e produit par l'opérateur POST ERREUR.

Identification	Type de référence	Valeur de référence
Ee	'ANALYTIQUE'	0

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	7,071067812	0.1%

6.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation A.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 24/36 Clé : V6.04.512 Révision : 772a55199c05

7 Modélisation E

7.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation A.

7.2 Caractéristiques du maillage

Le maillage qui comporte 25 mailles de type QUAD4 est représenté sur la figure 7.2-a. Le maillage est moins raffiné que celui de la modélisation A, de manière à ce que certains éléments voient les deux fissures horizontales.

Figure 7.2-a : Le maillage de la modélisation E.

7.3 Fonctionnalités testées

Comme pour les autres modélisations, la fissure verticale se branche sur les deux fissures horizontales, mais certains éléments voient les 3 fissures.

Même s'il est possible de brancher la fissure 3 sur les fissures 1 et 2, ce n'est pas possible localement i.e. l'algorithme mis en place ne peut attacher la fissure 3 qu'à une seule autre fissure au sein d'un même élément : il y donc confusion entre les fissures 1 et 2.

Pour résoudre ce problème, on force l'utilisateur à lier la fissure 2 à la fissure 1 via le mot clé JONCTION dans DEFI_FISS_XFEM. La fissure 3 sera donc explicitement liée à la fissure 2 qui est liée à la première. La fissure 3 sera donc aussi implicitement liée à la première.

7.4 Grandeurs testées et résultats

Les grandeurs testées sont identiques à celles utilisées pour la modélisation A.

Identification			Référence	% tolérance
	DV	MIN	-0.25	1.00E-11
	DX	MAX	-0.25	1.00E-11
DEPZON_I	DV	MIN	0	1.00E-11
	Dĭ	MAX	0	1.00E-11
	DX	MIN	-0.5	1.00E-11
		MAX	-0.5	1.00E-11
DEPZON_Z	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11
DEPZON_3	DV	MIN	0.75	1.00E-11
		MAX	0.75	1.00E-11
	DV	MIN	0	1.00E-11
	DY .	MAX	0	1.00E-11

Manuel de validation

Fascicule v6.04: Statique non linéaire des structures volumiques

Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 25/36 Clé : V6.04.512 Révision : 772a55199c05

Identification		Référence	% tolérance	
DEPZON_4	DX	MIN	0.75	1.00E-11
		MAX	0.75	1.00E-11
	DY	MIN	0	1.00E-11
		MAX	0	1.00E-11

Tableau 7.4-1

La déformée est représentée sur la figure 7.4-a.

Figure 7.4-a : Déformée de la structure.

On teste la valeur de E^e produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence
E e	'ANALYTIQUE'	0

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur **POST_ERREUR**.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	7,071067812	0.1%

7.5 Remarques

Les remarques sont identiques à celles précisées pour la modélisation A.

Manuel de validation

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Version

8 Modélisation F

8.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation A, mais on applique les conditions de chargement en contact. Les jonctions sont construites avec X-FEM et les fonctions de niveaux de la même manière que pour la modélisation A.

8.2 Caractéristiques du maillage

Le maillage identique à celui de la modélisation A, est représenté figure 3.2-a.

8.3 Fonctionnalités testées

On teste les fonctionnalité déjà présentées pour la modélisation A. On teste aussi le contact X-FEM dans le cas de jonctions avec X-FEM via l'opérateur DEFI CONTACT.

8.4 Grandeurs testées et résultats

On teste les déplacements au niveau des lèvres des fissures après avoir effectué les opérations de post-traitements relatives à X-FEM (POST_MAIL_XFEM et POST_CHAM_XFEM). Le déplacement DX doit suivre la fonction u_x de l'équation 2.2-2. Le déplacement DY doit suivre la fonction u_y de l'équation 2.2-3. On obtient la déformée de la figure 8.4-a.

Identification			Référence	% tolérance
	DV 44	MIN	0	7,0
	$DA - u_x$	MAX	0	7,0
DEFZON_I	DV - 11	MIN	0	7,0
	$DI - u_y$	MAX	0	7,0
	DY - 11	MIN	0	7,0
	$DX - u_x$	MAX	0	7,0
DEFZON_2	DY- <i>u_y</i>	MIN	0	7,0
		MAX	0	7,0
	DX- u_x	MIN	0	7,0
		MAX	0	7,0
DEPZON_3	DY- <i>u_y</i>	MIN	0	7,0
		MAX	0	7,0
DEPZON_4	DY - 11	MIN	0	7,0
	$DA - u_x$	MAX	0	7,0
	DY- <i>u</i> _y	MIN	0	7,0
		MAX	0	7,0

Tableau 8.4-1

Code_Aster	Version default
Titre : SSNV512 – Bloc découpé par une fissure verticale s[]	Date : 04/05/2018 Page : 27/36
Responsable COLOMBO Daniele	Clé · V6 04 512 Révision :

2 Révision : 772a55199c05

La déformée est représentée sur la figure 8.4-a. Le code couleur représente le champ de déplacement.

Figure 8.4-a : Déformée de la structure (exagération 10).

On teste la valeur de E^e produit par l'opérateur POST_ERREUR (exprimée en J×m⁻¹).

Identification	Type de référence	Valeur de référence
Ee	'ANALYTIQUE'	1,768 10 ⁶

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L 2	'ANALYTIQUE'	0,933673961652	0.1%

8.5 Remarques

On obtient une erreur élevée. En effet l'implémentation du redécoupage des facettes de contact n'a pas été implémenté. Les efforts de contact sur ces facettes ne sont pas prises en compte dans le calcul. La zone affecté concerne notamment les points de jonction (que l'on ne teste pas) ainsi que les éléments les contenant. Notons que les résultats sont nettement améliorer lorsqu'on raffine le maillage.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[…] Responsable : COLOMBO Daniele Version

9 Modélisation G

9.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation F, mais en contraintes planes, C_PLAN. Les jonctions sont construites de la même manière.

9.2 Caractéristiques du maillage

Le maillage identique à celui de la modélisation B, est représenté sur la figure 4.2-a.

9.3 Grandeurs testées et résultats

On teste les déplacements au niveau des lèvres des fissures après avoir effectué les opérations de post-traitements relatives à X-FEM (POST_MAIL_XFEM et POST_CHAM_XFEM). Le déplacement DX doit suivre la fonction u_x de l'équation 2.2-7. Le déplacement DY doit suivre la fonction u_y de l'équation 2.2-8.

Identification			Référence	% tolérance
			0	5,0
	$DA - u_x$	MAX	0	5,0
DEFZON_I	DV - 1	MIN	0	5,0
	$DI - u_y$	MAX	0	5,0
	DY-11	MIN	0	5,0
	$DX - u_x$	MAX	0	5,0
DEPZON_Z	DY- <i>u_y</i>	MIN	0	5,0
		MAX	0	5,0
	DX- u_x	MIN	0	5,0
		MAX	0	5,0
DEFZON_3	DV 4	MIN	0	5,0
	$DI - u_y$	MAX	0	5,0
DEPZON_4	DY-11	MIN	0	5,0
	$DA - u_x$	MAX	0	5,0
	1/	MIN	0	5,0
	DY- ^{wy}	MAX	0	5,0

Tableau 9.3-1

Date : 04/05/2018 Page : 29/36 Clé : V6.04.512 Révision : 772a55199c05

La déformée est représentée sur la figure 9.4-a.

Figure 9.4-a : Déformée de la structure (exagération 10).

On teste la valeur de E^e produit par l'opérateur POST_ERREUR (exprimée en $J \times m^{-1}$).

Identification	Type de référence	Valeur de référence
E e	'ANALYTIQUE'	2,2 10 ⁶

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur POST_ERREUR.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	1,11656914997	0.1%

9.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation F.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Version

10 Modélisation H

10.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation F, mais en 3D. Les jonctions sont construites de la même manière.

10.2 Caractéristiques du maillage

Le maillage identique à celui de la modélisation C, est représenté sur la figure 5.2-a.

10.3 Grandeurs testées et résultats

On teste les déplacements au niveau des lèvres des fissures après avoir effectué les opérations de post-traitements relatives à X-FEM (POST_MAIL_XFEM et POST_CHAM_XFEM). Le déplacement DX doit suivre la fonction u_x de l'équation 2.2-7. Le déplacement DY doit suivre la fonction u_y de l'équation 2.2-8. Le déplacement DZ doit suivre la fonction u_z de l'équation 2.2-9.

Identification		Référence	% tolérance	
		MIN	0	5,0
	$DA - u_x$	MAX	0	5,0
	DV 1	MIN	0	5,0
DEFZON_I	$D1 - u_y$	MAX	0	5,0
	D7 - 11	MIN	0	5,0
	$DZ - u_z$	MAX	0	5,0
		MIN	0	5,0
	$DA - u_x$	MAX	0	5,0
		MIN	0	5,0
DEFZON_2	$Dy - u_y$	MAX	0	5,0
	D7 - 11	MIN	0	5,0
	$DZ - u_z$	MAX	0	5,0
DEPZON_3	DX- u_x	MIN	0	5,0
		MAX	0	5,0
	DY- <i>u</i> y	MIN	0	5,0
		MAX	0	5,0
	DZ- <i>u</i> _z	MIN	0	5,0
		MAX	0	5,0
DEPZON_4		MIN	0	5,0
	$DA - u_x$	MAX	0	5,0
	DY- <i>u_y</i>	MIN	0	5,0
		MAX	0	5,0
	DZ- <i>u</i> _z	MIN	0	5,0
		MAX	0	5.0

Tableau 10.3-1

Date : 04/05/2018 Page : 31/36 Clé : V6.04.512 Révision : 772a55199c05

La déformée est représentée sur la figure 10.4-a.

Figure 10.4-a : Déformée de la structure (exagération 10).

On teste la valeur de E^e produit par l'opérateur POST_ERREUR (exprimée en J).

Identification	Type de référence	Valeur de référence
E e	'ANALYTIQUE'	2,2 10 ⁶

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur <code>POST_ERREUR</code>.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	1,11785807089	0.1%

10.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation F.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Version

11 Modélisation I

11.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation H.

11.2 Caractéristiques du maillage

Le maillage identique à celui de la modélisation D, est représenté sur la figure 6.2-a.

11.3 Grandeurs testées et résultats

Les grandeurs testées sont identiques à celles présentées pour la modélisation H.

lde	entification		Référence	% tolérance
DX- U _x	DY = 11	MIN	0	5,0
	$DX - u_x$	MAX	0	5,0
	DV - 11	MIN	0	5,0
DEFZON_I	$DI - u_y$	MAX	0	5,0
	D7 - 11	MIN	0	5,0
	$DZ - u_z$	MAX	0	5,0
	DV - 11	MIN	0	5,0
	$DX - u_x$	MAX	0	5,0
	DV 4	MIN	0	5,0
DEPZON_2	$DY - u_y$	MAX	0	5,0
	D7 - 11	MIN	0	5,0
	$DZ - u_z$	MAX	0	5,0
	DX- u_x	MIN	0	5,0
DEPZON_3		MAX	0	5,0
	DY- <i>u_y</i>	MIN	0	5,0
		MAX	0	5,0
	DZ- <i>u</i> _z	MIN	0	5,0
		MAX	0	5,0
	DV - 11	MIN	0	5,0
DEPZON_4	$DA - u_x$	MAX	0	5,0
	DY- <i>u_y</i>	MIN	0	5,0
		MAX	0	5,0
	DZ- <i>u</i> _z	MIN	0	5,0
		MAX	0	5,0

Tableau 11.3-1

 default

 Date : 04/05/2018
 Page : 33/36

 Clé : V6.04.512
 Révision : 772a55199c05

Version

La déformée est représentée sur la figure 11.4-a.

Figure 11.4-a : Déformée de la structure (exagération 10).

On teste la valeur de E^e produit par l'opérateur POST_ERREUR (exprimée en J).

Identification	Type de référence	Valeur de référence
E e	'ANALYTIQUE'	2,2 10 ⁶

On teste la valeur de $\|\boldsymbol{u}\|_{L^2}$ produit par l'opérateur <code>POST_ERREUR</code>.

Identification	Type de référence	Valeur de référence	Tolérance
Norme L ²	'ANALYTIQUE'	1,11785807089	0.1%

11.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation F.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Version

12 Modélisation J

12.1 Caractéristiques de la modélisation

Il s'agit de la même modélisation que la modélisation F.

12.2 Caractéristiques du maillage

Le maillage identique à celui de la modélisation E, est représenté sur la figure 7.2-a. Le maillage est moins raffiné que celui de la modélisation F, de manière à ce que certains éléments voient les deux fissures horizontales.

12.3 Grandeurs testées et résultats

Les grandeurs testées sont identiques à celles présentées pour la modélisation F.

Identification		Référence	% tolérance	
DV 4		MIN	0	7,0
	$DA - u_x$	MAX	0	7,0
DEFZON_I	DV-11	MIN	0	7,0
	$DI - u_y$	MAX	0	7,0
	DY- 11	MIN	0	7,0
	$DX - u_x$	MAX	0	7,0
DEFZON_2	DY- <i>u_y</i>	MIN	0	7,0
		MAX	0	7,0
DEPZON_3	DX- u_x	MIN	0	7,0
		MAX	0	7,0
	DY- <i>u</i> _y	MIN	0	7,0
		MAX	0	7,0
DEPZON_4	DX- u_x	MIN	0	7,0
		MAX	0	7,0
	DY- <i>u_y</i>	MIN	0	7,0
		MAX	0	7,0

Tableau 12.3-1

La déformée est représentée sur la figure 12.4-a.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[...] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 35/36 Clé : V6.04.512 Révision : 772a55199c05

Figure 12.4-a : Déformée de la structure (exagération 10).

12.4 Remarques

Les remarques sont identiques à celles précisées pour la modélisation F.

Titre : SSNV512 – Bloc découpé par une fissure verticale s[…] Responsable : COLOMBO Daniele Date : 04/05/2018 Page : 36/36 Clé : V6.04.512 Révision 772a55199c05

Version

default

13 Synthèse des résultats

La cinématique d'ouverture d'une fissure branchée à plusieurs autres fissures est possible avec X-FEM. Il faut néanmoins dans certains cas lier ces fissures entre elles via le mot clé JONCTION, même si ces fissures ne sont *a priori* pas branchées l'une sur l'autre.

L'approche a été validée en 2D pour des modélisations <code>C_PLAN</code> et <code>D_PLAN</code> et pour les éléments de type <code>QUAD4</code> et <code>TRIA3</code>. On a aussi validé l'approche en 3D pour les éléments <code>HEXA8</code> et <code>TETRA4</code>, avec et sans contact.