Responsable : TAHERI Saïd

Date : 12/01/2018 Page : 1/6 Clé : V6.04.200 Révision

44f156013c64

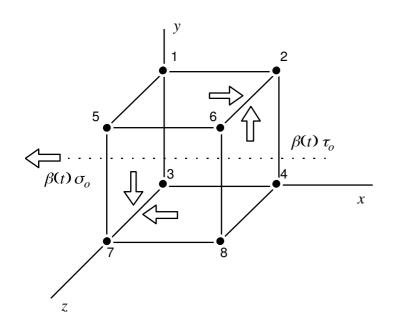
SSNV200 - Essai de traction cisaillement avec le modèle VISC_TAHERI

Résumé:

Le problème est quasi-statique non linéaire en mécanique des structures.

On analyse la réponse d'un élément de volume à un chargement en traction-cisaillement, effectué de telle façon que cela impose un état de contrainte-déformation uniforme dans l'élément. Il y a une seule modélisation 3D volumique.

Ce test est inspiré du SSNV102, qui teste le comportement de TAHERI en élasto-plasticité. Ici, on prend en compte la viscosité.


Responsable: TAHERI Saïd

Date: 12/01/2018 Page: 2/6 Clé: V6.04.200 Révision

44f156013c64

Problème de référence

1.1 Géométrie

Face YZ: (1, 3, 5, 7)

Face XZ: (3, 4, 7, 8)

Face 1YZ: (2, 4, 6, 8)

Face 1XZ: (1, 2, 5, 6)

 $\beta(t) \tau_o$ cisaillement imposé Face 1Y Z

 $\beta(t) \sigma_a$ pression imposée Face YZ

 $\beta(t)$ fonction d'effort

Propriétés de matériaux 1.2

élasticité

 $E = 200\,000\,MPa$

v = 0.3

isotrope

plasticité

 $C_{inf} = 0.065 \, MPa$

 $C_1 = -0.012 Mpa$

s = 450

b = 30

Taheri

m = 0.1

a = 312

 $\alpha = 0.3$

 $R_{o} = 72$

Viscosité **LEMAITRE**

N = 11

UN_SUR_K = 3.28410E - 04

UN SUR M=0.17857

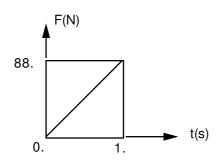
1.3 Conditions aux limites et chargements

N04

dx = dy = 0

Face YZ:

FX = FY = -F(t)


N08 N02, N06 dx = dy = dz = 0dx = 0

Face XZ: Face 1YZ: FX = -F(t)

FY = F(t)

Face 1XZ:

FX = F(t)

Date: 12/01/2018 Page: 3/6 Responsable: TAHERI Saïd Clé: V6.04.200 Révision

44f156013c64

Conditions initiales 1.4

Contraintes et déformations nulles à t=0.

Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Le test est de non régression. On note donc les valeurs obtenues par Code_Aster, avec la version 5.10

2.2 Résultats de référence

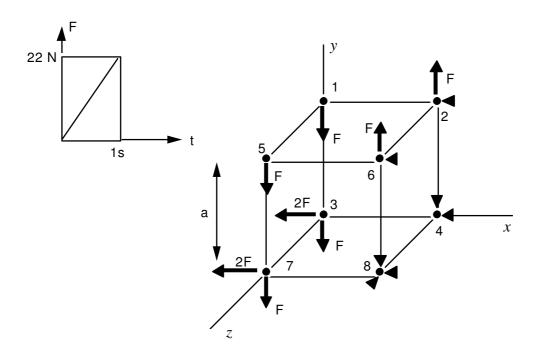
Valeurs de ε , γ , ε_p , γ_p , p et σ_p aux nœuds à t=1 s.

2.3 Références bibliographiques

- 1. S. ANDRIEUX P. SCHOENBERGER S. TAHERI : A three dimensional cyclic constitutive law for metals with a semi-discret memory variable - HI-71/8147 (1992)
- 2. P. GEYER J.M. PROIX P. SCHOENBERGER S. TAHERI : Modélisation des phénomènes de déformation progressive - Collection des notes internes de la DER 93NB00153

Responsable : TAHERI Saïd

Date : 12/01/2018 Page : 4/6 Clé : V6.04.200 Révision


44f156013c64

3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation 3D:

Cube élémentaire maillé à l'aide d'un hexaèdre à 8 nœuds.

3.2 Caractéristiques du maillage

1 maille HEXA8, largeur côté a=1.

3.3 Grandeurs testées et résultats

Identification	Référence	Aster	% différence
en tous noeuds			
3	2.10 ⁻⁵	2.10 ⁻⁵	0
γ	2.610 ⁻⁵	2.610 ⁻⁵	0
ϵ_p	0.	0.	0
$\overline{\gamma}_p$	0	0	0
p	0	0	0
σ_p	64.8	64.8	0

Le test valide également la lecture du champ EPSP_ELNO par LIRE_RESU, on vérifie que l'on a les mêmes valeurs avant et après écriture/relecture du résultat :

Responsable: TAHERI Saïd

Date : 12/01/2018 Page : 5/6 Clé : V6.04.200 Révision

44f156013c64

Identification			Référence	Type de référence	Tolérance		
Maille	MA1,	Nœud	NO1,	Champ	-	'NON_REGRESSION'	-
EPSP E	ELNO, Cr	np EPXX,	Inst 2,				

3.4 Remarques

Le chargement utilisé ici ne fait pas apparaître de plastification, alors que sans viscosité, ce même chargement conduit la structure en régime élastoplastique.

Le test concernant la valeur σ_p ne donne pas rigoureusement la même valeur sur toutes les machines (besoin de <code>TOLE_MACHINE</code>). Ce problème est lié à une fonction ayant une tangente verticale (puissance 0.3) qui apparaît dans la loi de comportement. Voir le commentaire dans le fichier ssnv200a.comm.

Responsable: TAHERI Saïd

Date: 12/01/2018 Page: 6/6 Clé: V6.04.200

Révision 44f156013c64

default

Synthèse des résultats 4

Ce test de non régression permet une vérification minimale du bon fonctionnement du modèle VISC TAHERI. Il demanderait à être complété par un test mettant en œuvre une véritable solution de référence.