Révision b7210d9bbe9e

Titre: SSNV121 - Rotation et traction hyper-élastique d'u[...]

Date: 24/09/2013 Page: 1/9 Responsable: ABBAS Mickaël Clé: V6.04.121

SSNV121 - Rotation et traction hyper-élastique d'un barreau

Résumé:

Ce test de mécanique quasi-statique consiste à faire tourner de 90° un barreau parallélépipédique, à le soumettre à une traction importante pour finalement le laisser revenir dans un état déchargé. On valide ainsi la cinématique des grandes déformations hyper-élastiques (commande STAT NON LINE, COMPORTEMENT), et donc en particulier les grandes rotations, pour une relation de comportement élastique linéaire.

Le barreau est modélisé par un élément volumique (HEXA8, modélisation A) ou bien plan (QUAD4, hypothèse de déformations planes, modélisation B).

Les résultats obtenus par Code_Aster ne diffèrent pas de la solution théorique.

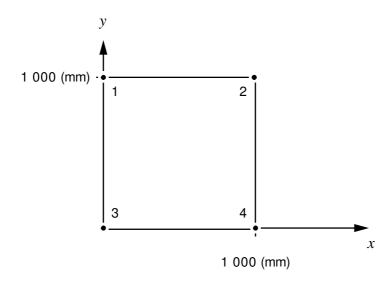
Responsable : ABBAS Mickaël

Date : 24/09/2013 Page : 2/9 Clé : V6.04.121 Révision

b7210d9bbe9e

1 Problème de référence

1.1 Géométrie



1.2 Propriétés de matériaux

Comportement hyper-élastique de St Venant - Kirchhoff :

$$S = \frac{v E}{(1+v)(1-2v)} \operatorname{tr}(E) 1 + \frac{E}{1+v} E$$

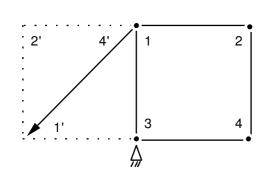
$$E = 200\,000$$
.MPa

$$v = 0.3$$

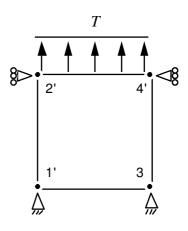
1.3 Conditions aux limites et chargements

Le chargement est appliqué en deux temps : tout d'abord, une rotation d'ensemble de la structure, suivie par une traction dans la nouvelle configuration :

Rotation d'ensemble (0 < t < 1 s)



Traction (1 s < t < 2 s)



Responsable : ABBAS Mickaël

Date : 24/09/2013 Page : 3/9 Clé : V6.04.121 Révision

b7210d9bbe9e

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Il s'agit d'un problème plan. On peut chercher la solution sous la forme d'une rotation rigide et d'un allongement d'un facteur λ dans la direction $\mathcal Y$.

$$\mathbf{U}(X,Y,Z) = \begin{bmatrix} \mathbb{I} & -X-Y & \mathbb{I} \\ \mathbb{I}(1+\lambda)X-Y \\ \mathbb{I} & 0 \end{bmatrix}$$

Le gradient de la transformation et la déformation de Green-Lagrange sont alors :

$$\mathbf{F} = \begin{bmatrix} \begin{bmatrix} 0 & 0 & -1 & 00 \\ 0 & 1 + \lambda & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{E} = \begin{bmatrix} \begin{bmatrix} e & 0 & 00 \\ 0 & 0 & 0 \end{bmatrix} \\ 0 & 0 & 0 \end{bmatrix} \text{ avec } e = \frac{\lambda(\lambda + 2)}{2}$$

La relation de comportement conduit alors à un tenseur de contraintes lagrangiennes diagonal :

La condition aux limites de l'équation d'équilibre nous permet alors de déterminer la valeur de l'allongement λ :

$$T = (\mathbf{FS})_{yx} = (1+\lambda)S_{xx} \Rightarrow \frac{(1-\nu)E}{(1+\nu)(1-2\nu)}\frac{\lambda(\lambda+1)(\lambda+2)}{2} = T$$

La contrainte de Cauchy est donnée par :

$$\sigma = \frac{1}{\operatorname{Det} \mathbf{F}} \mathbf{F} \mathbf{S} \mathbf{F}^{T} \Rightarrow \begin{bmatrix} \mathbf{I} \\ \mathbf{I} \\ \mathbf{J} \\ \mathbf{J} \end{bmatrix} \sigma_{xx} = \sigma_{zz} = \frac{S_{yy}}{1+\lambda}$$
$$[\sigma_{yy} = (1+\lambda) S_{xx}]$$

Enfin, la force exercée sur les faces :

•
$$[2,4]: F_y = \sigma_{yy} S_{[2,4]} = \sigma_{yy} S_{o[2,4]}$$

•
$$[4,3]: F_x = \sigma_{xx} S_{[4,3]} = \sigma_{xx} (1+\lambda) S_{o[4,3]}$$

•
$$[1,2,3,4]: F_z = \sigma_{zz} S_{[1,2,3,4]} = \sigma_{zz} (1+\lambda) S_{o[1,2,3,4]}$$

où $S_{o[\]}$ représentent les surfaces initiales des faces.

Date: 24/09/2013 Page: 4/9 Responsable : ABBAS Mickaël Clé: V6.04.121 Révision

b7210d9bbe9e

2.2 Résultats de référence

On adopte comme résultats de référence les déplacements, la contrainte de Cauchy et la force exercée sur les faces [2,4] et [4,3].

Au temps t=2 s:

On cherche T tel que l'allongement $\lambda = 0.1$

soit
$$T = 31\ 096.154\ MPa$$
.

La contrainte de Cauchy est alors :

Les forces exercées sont :

$$\begin{aligned} & \mathsf{F}_x &= 12\,115.385 \times S_{o[4,3]} \; N \\ & \mathsf{F}_y &= 31\,096.154 \times S_{o[2,4]} \; N \\ & \mathsf{F}_z &= 12\,115.385 \times S_{o[1,2,3,4]} \; N \end{aligned}$$

Au temps $t=3 \ s$:

Le barreau est revenu dans son état initial :

$$\begin{array}{ccc}
\square \lambda & = & 0 \\
\square \sigma & = & 0 \\
\P F & = & 0
\end{array}$$

2.3 Incertitude sur la solution

Solution analytique.

2.4 Références bibliographiques

Eric LORENTZ "Une relation de comportement hyperélastique non linéaire" Note interne EDF/DER HI-74/95/011/0

Responsable : ABBAS Mickaël

Date : 24/09/2013 Page : 5/9 Clé : V6.04.121 Révision

b7210d9bbe9e

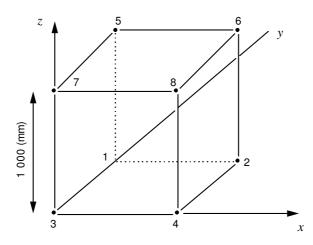
3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation volumique :

1 maille HEXA 8

1 maille QUAD4

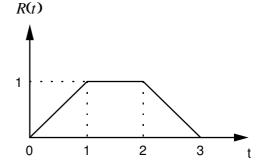


Conditions aux limites :

(3,7): DX = 0

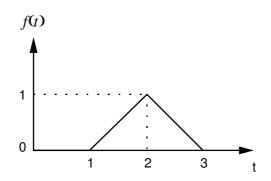
(1,5): DX = -1 000 R(t)

(2,6): DX = -2 000 R(t) (4,8): DX = -1 000 R(t) DY = 0 DY = - 1 000 R(t)



Chargement: Traction sur la face [2,4,8,6]

maille [2,4,8,6] (QUAD4): $FY = 31\ 096.154\ f(t)\ MPa$



3.2 Caractéristiques du maillage

Nombre de nœuds : 8 Nombre de mailles : 2

1 HEXA8 1 QUAD4

Responsable : ABBAS Mickaël

Date: 24/09/2013 Page: 6/9 Clé: V6.04.121

Révision

b7210d9bbe9e

3.3 Grandeurs testées et résultats

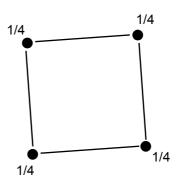
Identification	Référence	Aster	% différence
t = 2 Déplacement DX (NO2)	100	100	0
t = 2 Déplacement DY (NO4)	1100	1100	0
t = 2 Contraintes SIGXX (PG1)	11013.986	11013.986	0
t = 2 Contraintes SIGYY (PG1)	31096.154	31096.154	0
t = 2 Contraintes SIGZZ (PG1)	11013.986	11013.986	0
t = 2 Contraintes SIGXY (PG1)	0	□ 10 ^{–9}	1
t = 2 Contraintes SIGXZ (PG1)	0	□ 10 ^{−10}	1
t = 2 Contraintes SIGYZ (PG1)	0	□10 ⁻¹⁰	1
t = 3 Déplacement DX10 (NO2)	0	□ 10 ^{−11}	1
t = 3 Déplacement DY (NO4)	0	□ 10 ^{−12}	1
t = 3 Contraintes SIGXX (PG1)	0	□ 10 ⁻⁹	1
t = 3 Contraintes SIGYY (PG1)	0	□ 10 ⁻¹⁰	1
t = 3 Contraintes SIGZZ (PG1)	0	□ 10 ⁻⁹	1
t = 3 Contraintes SIGXY (PG1)	0	□ 10 ^{−11}	1
t = 3 Contraintes SIGXZ (PG1)	0	□ 10 ⁻¹⁰	1
t = 3 Contraintes SIGYZ (PG1)	0	□ 10 ^{−11}	1
t = 2 Force nodale DX (NO8)	3.0289 10 ⁹	3.0288 10 ⁹	-0.002%
t = 2 Force nodale DY (NO8)	7.774 10 ⁹	7.774 10 ⁹	0
t = 2 Force nodale DZ (NO8)	3.0289 10 ⁹	3.0288 10 ⁹	-0.002%

3.4 Remarques

Calcul de la force nodale :

La force appliquée $\,F\,$ sur une face décrite par une maille linéaire se répartit par :

$$F_{noeud} = \frac{1}{4} \mathsf{F}$$



Responsable : ABBAS Mickaël

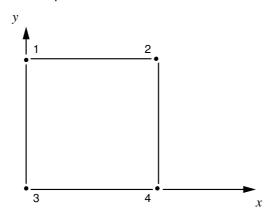
Date : 24/09/2013 Page : 7/9 Clé : V6.04.121 Révision

b7210d9bbe9e

4 Modélisation B

4.1 Caractéristiques de la modélisation

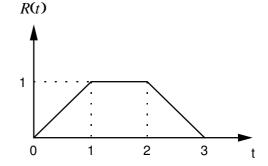
Modélisation 2D déformations planes



Conditions aux limites :

3: DX = 0

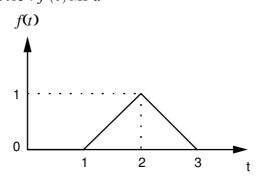
 DY = 0DY = -1 000 R(t)



Chargement:

Traction sur la face [2,4]

maille [2,4]: $FY = 31\,096.154\,f(t)\,MPa$



4.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles : 2

1 QUAD4 1 SEG2

4.3 Grandeurs testées et résultats

Identification	Référence	Aster	% différence
t = 2 Déplacement DX (NO2)	100	100	0

Titre : SSNV121 - Rotation et traction hyper-élastique d'u[]		Date : 24/09/2013 Page : 8/9	
Responsable : ABBAS Mickaël		Clé : V6.04.121	Révision : b7210d9bbe9e
t = 2 Déplacement DY (NO4)	1100	1100	0
t = 2 Contraintes SIGXX (PG1)	11013.986	11013.986	0
t = 2 Contraintes SIGYY (PG1)	31096.154	31096.154	0
t = 2 Contraintes SIGZZ (PG1)	11013.986	11013.986	0
t = 2 Contraintes SIGXY (PG1)	0	□ 10 ⁻¹⁰	1
t = 3 Déplacement DX (NO2)	0	□ 10 ^{−12}	1
t = 3 Déplacement DY (NO4)	0	□ 10 ^{−12}	1
t = 3 Contraintes SIGXX (PG1)	0	□ 10 ⁻¹⁰	1
t = 3 Contraintes SIGYY (PG1)	0	□ 10 ^{−10}	1
t = 3 Contraintes SIGZZ (PG1)	0	□ 10 ^{−10}	1
t = 3 Contraintes SIGXY (PG1)	0	□ 10 ^{−10}	/
t = 2 Force nodale DX (NO4)	6.0577 10 ⁶	6.0577 10 ⁶	0
t = 2 Force nodale DY (NO4)	15.5481 10 ⁶	15.5481 10 ⁶	0

4.4 Remarques

Calcul de la force nodale :

La force appliquée $\,F\,$ sur une face décrite par une maille linéaire se répartit par :

$$F_{noeud} = \frac{1}{2} \mathsf{F}$$

Responsable : ABBAS Mickaël

Date : 24/09/2013 Page : 9/9 Clé : V6.04.121 Révision

Révision b7210d9bbe9e

5 Synthèse des résultats

Il apparaît à l'issue de ce test que la solution numérique coïncide remarquablement avec la solution analytique. On remarquera cependant que la forte non linéarité due aux grandes rotations nécessite une discrétisation en temps relativement fine, sans être pénalisante sur la précision puisque, contrairement à une loi de comportement incrémentale, les erreurs ne se cumulent pas d'un pas de temps sur l'autre.