Titre: SSNP306 - Validation du critère de flambement par [...]

Responsable: KAZYMYRENKO Cyril Clé: V6.03.306 Révision

9d10d4a3f661

Date: 12/01/2018 Page: 1/5

SSNP306 - Validation du critère de flambement par recherche sélective des valeurs propres

Résumé:

Ce test permet la validation de la généralisation du critère de flambement (perte d'unicité de la solution, présence de bifurcation) pour les modèles en formulations mixtes. Le nouveau critère qui s'écrit comme un problème aux valeurs propres sous-contraintes est validé pour la modélisation d'endommagement non-local GRAD VARI. On compare les plus petits modes de la formulation GRAD VARI et ceux de la modélisation locale dans le cas d'une étude homogène.

Titre: SSNP306 - Validation du critère de flambement par [...]

Date: 12/01/2018 Page: 2/5 Clé: V6.03.306 Révision Responsable: KAZYMYRENKO Cyril

9d10d4a3f661

Problème de référence

1.1 Cadre théorique

Le critère de flambement habituel se traduit par une vérification de signe de la plus petite valeur propre de la matrice tangente $K \delta u = \mu \delta u$. Si $\mu \leq 0$ la solution du problème mécanique n'est plus unique.

Pour les formulations mixtes, les modes propres associés à la présence de coefficients de Lagrange doivent être éliminés. Ceci nous ramène vers un problème aux modes propres sous contrainte.

$$K \begin{pmatrix} \delta u \\ \delta \lambda \end{pmatrix} = \mu \begin{pmatrix} \delta u \\ 0 \end{pmatrix}$$
 est le nouveau critère de flambement pour une modélisation mixte.

Dans le cas GRAD VARI le critère est encore plus restrictif, car il faut également prendre en compte la loi de comportement pour obtenir des modes physiques. Ceci doit pouvoir se généraliser à d'autres types de modélisations. Le critère s'écrit alors comme un problème aux valeurs propres généralisé:

$$K \begin{pmatrix} \delta u \\ \delta \alpha \\ \delta \lambda \end{pmatrix} = \mu \begin{pmatrix} \delta u \\ 0 \\ 0 \end{pmatrix} \text{ nouveau critère de flambement pour une modélisation GRAD_VARI.}$$

Cela nous fournit deux contraintes d'égalités dans la recherche du mode en déplacement. La première nous permet de vérifier la loi de comportement du matériau et la seconde l'égalité des perturbations de l'endommagement aux noeuds avec celui calculé localement aux points de Gauss.

Nous validons le nouveau critère de flambement en faisant une comparaison entre les plus petits modes de la formulation GRAD VARI et ceux de la modélisation locale dans le cas d'une étude homogène.

Remarque:

Techniquement afin d'y parvenir les nouvelles commandes RIGI GEOM et DDL EXCLUS ont été ajoutées dans l'opérateur CRIT STAB. On les utilise dans ce cas précis de la façon suivante : CRIT STAB = F(RIGI GEOM = 'NON', # Nécessaire pour appeler ensuite DDL EXCLUS DDL EXCLUS = ('VARI', 'LAG GV'))

1.2 Géométrie

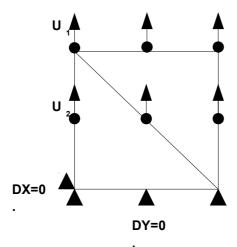


Figure 1 : Représentation du problème en deux mailles quadratiques

Titre : SSNP306 - Validation du critère de flambement par [...]

Responsable : KAZYMYRENKO Cyril Clé : V6.03.306

Révision 9d10d4a3f661

Date: 12/01/2018 Page: 3/5

901004831661

1.3 Propriétés du matériau

Loi d'endommagement : matériau ENDO FRAGILE

Caractéristiques élastique :

• $E = 3.10^4 \text{ Pa}$

• v = 0.25

Caractéristiques liées à la loi d'endommagement :

•Limite d'élasticité : $\sigma^{Y} = 3.0 \, \text{Pa}$

•Pente d'adoucissement : $E^T = -1.95 \cdot 10^3 \, \mathrm{Pa}$ •Caractéristiques non-locales : $L_c = 1.0$; r = 100.

1.4 Conditions aux limites et chargements

Encastrement : Déplacements imposés nuls DY = 0. sur l'arrête horizontale du bas (y = 0.) et DX = 0. sur le nœud extrême gauche (x = y = 0.). Voir figure 1.

Chargement 1 : Déplacement imposé U_1 sur l'arrête horizontale du haut (y=1.) : $DY=2.10^{-6}\,\mathrm{t}$

Chargement 2 : Déplacement imposé $\,U_2\,$ sur tous les nœuds de coordonnées $\,y\!=\!0.5$: $\,DY\!=\!1.10^{-6}\,{\rm t}\,$

2 Solution de référence

La même étude est faite en local et en non local. On compare les plus petites valeurs propres de l'opérateur tangent calculées avec le critère de flambement standard en local (qu'on prendra comme référence) et avec le nouveau critère en non local. La modélisation <code>D_PLAN</code> est utilisée en local, la modélisation <code>D_PLAN_GRAD_VARI</code> est utilisée en non local. Le chargement est effectué sur une durée de 100 pas de temps, de sorte à visualiser le passage par un état d'endommagement non-nul de la structure. On considère le test réussi, si l'écart relatif ne dépasse pas 0.01%.

Titre : SSNP306 - Validation du critère de flambement par [...]

Date: 12/01/2018 Page: 4/5 Révision Responsable: KAZYMYRENKO Cyril Clé: V6.03.306

9d10d4a3f661

Modélisation A 3

Caractéristiques du maillage 3.1

Le maillage est constitué de 2 TRIA6 tel que présenté en Figure 1.

3.2 Grandeurs testées et résultats

NUME_ORDRE	Référence	Aster	% différence	Tolérance
100	-980.12	-981.05	0.095%	0.02%
90	-1142.93	-1056.03	0.093%	0.02%
80	-1142.93	-1143.95	0.089%	0.02%
70	-1249.79	-1249.79	0.084%	0.02%
60	-1381.74	-1381.74	0.076%	0.02%
50	-1553.5	-1554.52	0.066%	0.02%
40	-1641.67786584879	-1641.67786584879	0.0E+00%	0.02%
1	-1641.67786584879	-1641.67786584879	1.4E-14%	0.02%

Tableau 1: Comparaison de valeurs propres en local et non-local

Titre: SSNP306 - Validation du critère de flambement par [...]

Responsable : KAZYMYRENKO Cyril Clé

Date : 12/01/2018 Page : 5/5 Clé : V6.03.306 Révision

9d10d4a3f661

4 Synthèses des résultats

On retrouve des résultats identiques en modélisation locale et non locale, ce qui valide l'introduction du nouveau critère de flambement pour les problèmes mixtes.