Date: 02/05/2018 Page: 1/6 Responsable: FILIOT Astrid Clé: V6.03.176 Révision

539f2021a63a

SSNP176 - Modélisations de type D PLAN INCO * en élasticité quasi-incompressible

Résumé:

L'objectif de ce test est d'apporter une vérification supplémentaire des modélisations de type D PLAN INCO * sur un modèle dont on connaît la solution analytique. Il est constitué de deux modélisations :

- Modélisation A: test sur la modélisation D PLAN INCO UPO (donc sur des éléments linéaires)
- Modélisation B: test sur les modélisations D PLAN INCO UP et D PLAN INCO UPG (sur des éléments quadratiques)

Clé: V6.03.176 Révision Responsable: FILIOT Astrid

539f2021a63a

Date: 02/05/2018 Page: 2/6

1 Problème de référence

Le problème de référence est inspiré d'un article de F. Auricchio et al. [1] qui en propose une solution analytique.

1.1 Géométrie

On considère un carré de dimension $2m \times 2m$.

La géométrie peut être visualisée sur la figure 1.1-1, avec le maillage qui sera utilisé pour les deux modélisations A et B.

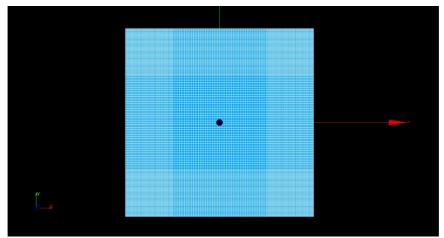


Figure 1.1-1: Géométrie et maillage

1.2 Propriétés du matériau

Le matériau est élastique quasi-incompressible, c'est-à-dire que son coefficient de Poisson tend vers 0.5:

• Module d'élasticité : E = 120 Pa

• Coefficient de Poisson : v = 0.499999

Ces valeurs peuvent paraître surprenantes mais n'ont pas de signification physique puisque le test est purement mathématique.

1.3 Conditions aux limites et chargements

On encastre les quatre bords du carré (DX = DY = 0), et on applique une force volumique sur l'ensemble du carré. Cette force est variable dans l'espace et a pour composantes :

$$FX = \mu y \left(\frac{-3}{2}x^4 + 6x^2 - 3x^2y^2 + y^2 - \frac{5}{2}\right) - 15x^2(y - 1)$$

$$FY = \mu x \left(\frac{3}{2}y^4 - 6y^2 + 3y^2x^2 - x^2 + \frac{5}{2}\right) - 3y^2 - 5x^3$$

Date: 02/05/2018 Page: 3/6 Responsable: FILIOT Astrid Clé: V6.03.176 Révision

539f2021a63a

2 Solution de référence

2.1 Méthode de calcul

Les résultats de référence sont soit des valeurs de non-regression, soit les solutions analytiques en déplacement et en pression, données par les formules suivantes [1] :

$$U1 = \frac{(x^2 - 1)^2(y^2 - 1)y}{4}$$
 et $U2 = \frac{(y^2 - 1)^2(1 - x^2)x}{4}$

$$P=5x^{3}(y-1)+y^{3}$$

2.2 Grandeurs et résultats de référence

La solution analytique donne :

Lieu	Instant	Composante (DEPL)	Valeur
Nœud pt_B en $(0.5, 0.5)$	t=1s	DX	-0.052734375 mm
Nœud pt_B en (0.5, 0.5)	t=1s	DY	0.052734375 mm
Nœud pt_B en $(0.5, 0.5)$	t=1s	PRES	-0.1875 <i>Pa</i>

2.3 Incertitudes sur la solution

Cette solution de référence analytique est exacte.

2.4 Référence bibliographique

An analysis of some mixed-enhanced finite element for plane linear elasticity, F. Auricchio, L. Beirao da Veiga, C. Lovadina, A. Reali. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2947- 2968

Date: 02/05/2018 Page: 4/6 Responsable: FILIOT Astrid Clé: V6.03.176 Révision

539f2021a63a

Modélisation A 3

3.1 Caractéristiques de la modélisation

On utilise une modélisation D PLAN INCO UPO.

3.2 Caractéristiques du maillage

Le maillage est constitué de mailles de type QUAD4 (quadrangle linéaire), avec un total de 15360 éléments.

Grandeurs testées et résultats 3.3

On teste les résultats de la modélisation par rapport à la solution de référence analytique présentée en 2, et également en non-regression. La pression n'est pas testée car ce degré de liberté n'est pas porté par les éléments d'une modélisation * INCO UPO.

Lieu	Instant	Composante (DEPL)	VALE_REFE	Precision
Nœud pt_B en $(0.5, 0.5)$	t=1s	DX	-0.052734375 mm	1.0E-6
Nœud pt_B en $(0.5, 0.5)$	t=1s	DY	0.052734375 mm	1.0E-6

Identification	Type de référence
Nœud pt_B - DEPL/DX	NON_REGRESSION
Nœud pt_ B - DEPL/DY	NON_REGRESSION

Date: 02/05/2018 Page: 5/6 Responsable: FILIOT Astrid Clé: V6.03.176 Révision

539f2021a63a

Modélisation B 4

4.1 Caractéristiques de la modélisation

On utilise deux modélisation s différentes D PLAN INCO UP et D PLAN INCO UPG.

4.2 Caractéristiques du maillage

Le maillage est constitué de mailles de type QUAD8 (quadrangle quadratique), avec un total de 15360 éléments.

4.3 Grandeurs testées et résultats

On teste les résultats de la modélisation par rapport à la solution de référence analytique présentée en 2, et également en non-regression :

Lieu	Instant	Composante (DEPL)	VALE_REFE	Precision
Nœud pt_B en (0.5, 0.5)	t=1s	DX	-0.052734375 mm	1.0E-6
Nœud pt_B en (0.5, 0.5)	t=1s	DY	0.052734375 mm	1.0E-6
Nœud pt_B en $(0.5, 0.5)$	t=1s	PRES	-0.1875 Pa	1.0E-6

Identification	Type de référence
Nœud pt_B - DEPL/DX	NON_REGRESSION
Nœud pt_B - DEPL/DY	NON_REGRESSION
Nœud pt_ B - DEPL/P	NON_REGRESSION

Responsable: FILIOT Astrid

Date: 02/05/2018 Page: 6/6 Clé: V6.03.176

Révision

539f2021a63a

5 Synthèse des résultats

Le modèle numérique permet de retrouver les résultats du problème de référence analytique avec une précision inférieure à 1.0E-6, quel que soit le type de modélisation utilisée D_PLAN_INCO_UPO, D_PLAN_INCO_UPOUD_PLAN_INCO_UPG.

On retiendra que ce cas test est intéressant car les problèmes incompressibles présentant une solution analytique sont rares.