Responsable : GÉNIAUT Samuel Clé : V6.03.138 Révision

35ed33f39c7d

Date: 12/10/2012 Page: 1/21

SSNP138 - Fissure inclinée en 2D avec X-FEM

Résumé

Ce test a pour but de valider le calcul des facteurs d'intensité de contrainte (K_I et K_{II}) avec X-FEM [bib1] en $2\mathrm{D}$, dans le cadre de l'élasticité linéaire. Ce test a également pour but de tester les chargements volumiques de FORCE_INTERNE et de PESANTEUR avec la méthode X-FEM en $2\mathrm{D}$.

Ce test met en jeu une plaque rectangulaire avec une fissure centrale droite inclinée, et soumise à une chargement de traction sur les bords inférieur et supérieur de la plaque (modélisations A C, D, E) ou soumise à une force volumique et un encastrement sur la partie supérieure (modélisation B), ou soumise à une pression sur les lèvres (modélisation F).

Différentes modélisations sont considérées :

- 1. modélisation $A: X ext{-}FEM \ 2D$, chargement surfacique sur les bords, mailles QUAD4, enrichissement géométrique
- 2. modélisation B: X-FEM 2D, chargement volumique, mailles QUAD4, enrichissement géométrique
- 3. modélisation C : X-FEM 2D, chargement surfacique sur les bords, mailles <code>TRIA3</code>, enrichissement géométrique
- 4. modélisation $D: X ext{-}FEM \ 2D$, chargement surfacique sur les bords, mailles <code>TRIA3</code>, enrichissement topologique
- 5. modélisation $E: X ext{-}FEM 2D$, chargement surfacique sur les bords, mailles <code>TRIA6</code>, enrichissement topologique
- 6. modélisation $F: X ext{-}FEM 2D$, chargement sur les lèvres, mailles <code>TRIA3</code>, enrichissement topologique

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 2/21 Clé : V6.03.138 Révision

35ed33f39c7d

La validation porte sur les facteurs d'intensité de contrainte (K_I et K_{II}), par comparaison avec la solution analytique pour les modélisations A, C, D, E, F et une solution de non-régression pour la modélisation B.

Date: 12/10/2012 Page: 3/21 Responsable : GÉNIAUT Samuel Clé: V6.03.138 Révision

35ed33f39c7d

Problème de référence

1.1 Géométrie

La structure 2D est une plaque rectangulaire (LX = 0.2 m, LY = 0.5 m), comportant une fissure centrale droite, inclinée d'un angle θ variable par rapport à l'axe horizontal [Figure 1.1-1]. La longueur de la fissure est constante (a=0.04 m). Dans ce test, l'angle θ prendra successivement les valeurs : 0° , 15° , 30° , 45° , 60° pour la modélisation A et 0° , 45° pour la modélisation B.

On appelle « ligne inférieure », la ligne en y=-LY/2 et « ligne supérieure », la ligne en y = LY/2.

Les nœuds notés A, B, C et D sur la Figure 1.1-1 servent à imposer les conditions aux limites, qui sont explicitées au paragraphe [§1.3].

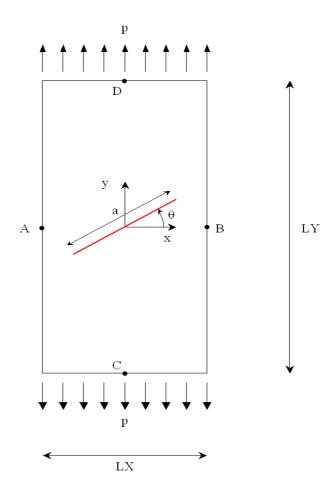


Figure 1.1-1 : géométrie de la plaque fissurée et chargement de la modélisation A.

1.2 Propriétés du matériau

 $E = 210 \, 10^9 \, Pa$ Module d'Young:

Coefficient de Poisson: modélisation A $\nu = 0.3$, modélisation B $\nu = 0$

Date: 12/10/2012 Page: 4/21 Responsable : GÉNIAUT Samuel Clé: V6.03.138 Révision

35ed33f39c7d

Masse volumique: modélisation B : $\rho = 7800 \, kg / m^3$

1.3 Conditions aux limites et chargements

Modélisation A:

Le chargement consiste à appliquer une force repartie sur les lignes inférieure et supérieure $p = 10^6 Pa$.

Afin de bloquer les modes rigides, on bloque les déplacements des nœuds A, B, C et D comme

- $DY^A = DY^B = 0$;
- $DX^C = DX^D = 0$.

Modélisation B:

Le chargement consiste à appliquer à la plaque un encastrement sur la ligne supérieure et une force volumique de type force interne ou pesanteur. On fait en sorte d'appliquer le même chargement (suivant -Y) pour deux calculs successifs avec ces mots clé : pour le premier densité de force imposée de $78000 N/m^3$ et pour le second on choisit une accélération de la pesanteur égale à $10 \, m.s^{-2}$ et donc densité de force de $10.0 = 78000 \, N/m^3$.

Modélisations C , D , E :

Mêmes hypothèses que la modélisation A

Modélisation F:

Le chargement de traction sur les faces supérieure et inférieure est remplacé par une pression sur les lèvres de la fissure (les 2 chargements sont équivalents)

1.4 Solution de référence

Modélisation A:

Les expressions analytiques des facteurs d'intensité de contrainte K_I et K_{II} sont des fonctions de la force répartie p, de la longueur de la fissure a, de la largeur de la plaque LX et de l'angle θ :

$$K_{I} = p\sqrt{\pi \frac{a}{2}} F\left(\frac{a}{Lx}\right) \cos^{2} \theta$$
$$K_{II} = p\sqrt{\pi \frac{a}{2}} F\left(\frac{a}{Lx}\right) \cos \theta \sin \theta$$

où la fonction F peut être déterminée de plusieurs manières différentes. Nous choisissons celle obtenue par Brown en 1966 [bib2, p41], dont la précision est inférieure à 0.5% si le rapport entre la longueur de la fissure et la largeur de la plaque est inférieure ou égale à 0.7 (dans notre cas, a/LX = 0.2):

$$F(x) = 1 + 0.128x - 0.288x^2 + 1.525x^3$$

Avec les valeurs numériques du test :

Référence		
α (°)	$K_I(Pa.m^{-1/2})$	$K_{II}(Pa.m^{-1/2})$
0	2,5725024656 10 5	0
15	2,4001774761 105	6,4312561642 10 ⁴
30	1,9293768492 105	1,1139262432 10⁵

Date: 12/10/2012 Page: 5/21 Responsable : GÉNIAUT Samuel Clé: V6.03.138 Révision

35ed33f39c7d

45	1,2862512328 10 ⁵	1,2862512328 105
60	6,4312561641 104	1,1139262432 105

Tableau 1.4-1 : valeurs de référence pour $\ K_{I} \$ et $\ K_{II}$

Théoriquement, ces valeurs sont les mêmes pour les deux fonds de fissure.

Modélisation B :

On réalise des tests de non régression.

Modélisations C , D , E , F :

On reprend les valeurs de référence de la modélisation $\,A\,$

Références bibliographiques 1.5

- [1] GENIAUT S., MASSIN P.: eXtended Finite Element Method, Manuel de référence de Code_Aster, [R7.02.12]
- [2] TADA H., PARIS P., IRWIN G.: The stress analysis of cracks handbook, 3 ème éd., 2000

Date: 12/10/2012 Page: 6/21 Responsable : GÉNIAUT Samuel Clé: V6.03.138 Révision

35ed33f39c7d

2 Modélisation A

Dans cette modélisation, la méthode des éléments finis étendue (X-FEM) est utilisée. On définit un rayon d'enrichissement géométrique avec un nombre de couche d'élément égal à 3.

2.1 Caractéristiques du maillage

La structure est modélisée par un maillage régulier composé de 100×100 QUAD4, respectivement suivant les axes x, y. La fissure n'est pas maillée.

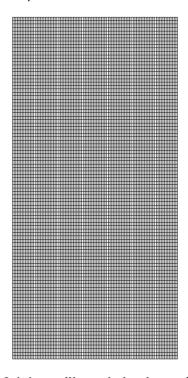


Figure 2.1-1 : maillage de la plaque fissurée

2.2 Grandeurs testées et résultats

Pour chaque valeur de l'angle θ , on teste la valeur des facteurs d'intensité de contraintes K_I et $K_{I\!I}$ données par CALC G (pour les deux fonds de fissure) ainsi que celles données par K1 et K2 de POST K1 K2 K3 (pour les deux fonds de fissure).

Pour la méthode $G-th\hat{e}ta$ (commande CALC G), on teste deux choix de couronnes de champ thêta:

- $C1: R_{inf} = 0.1 a \text{ et } R_{sup} = 0.3 a;$
- $C2: R_{inf} = h \text{ et } R_{sup} = 3h$;

où h est la taille caractéristique des mailles :

$$h = \sqrt{\left(\frac{LX}{NX}\right)^2 + \left(\frac{LY}{NY}\right)^2}$$

Pour la méthode par extrapolation des sauts de déplacements (POST K1 K2 K3), l'abscisse curviligne maximale est égale à 0.3a.

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 7/21 Clé : V6.03.138 Révision

35ed33f39c7d

2.2.1 Résultats pour thêta= 0°

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	2,5725 10⁵	2,0%
C1 + fond2 : K1	2,5725 10⁵	2,0%
C1 + fond1 : K2	0	257
C1 + fond2 : K2	0	257
C1 + fond1 : G	0,29	2,0%
C1 + fond2 : G	0,29	2,0%
C2 + fond1 : K1	2,5725 10⁵	2,0%
C2 + fond2 : K1	2,5725 10⁵	2,0%
C2 + fond1 : K2	0	257
C2 + fond2 : K2	0	257
C2 + fond1 : G	0,29	2,0%
C2 + fond2 : G	0,29	2,0%
POST_K1_K2_K3		
fond1: K1	2,5725 10⁵	2,00%
fond2: K1	2,5725 10⁵	2,00%
fond1: K2	0	257
fond2: K2	0	257

Les valeurs nulles de $\,K_{\rm 2}\,$ sont testées en absolu avec une tolérance égale à $\,K_{\rm 1}^{\rm ref}/1000\,$.

2.2.2 Résultats pour thêta= 15°

Identification	Référence
CALC_G	
C1 + fond1 : K1	2,4001 10 ⁵
C1 + fond2 : K1	2,4001 10⁵
C1 + fond1 : K2	6,4313 10 ⁴
C1 + fond2 : K2	6,4313 10 ⁴
C2 + fond1 : K1	2,4001 10 ⁵
C2 + fond2 : K1	2,4001 10 ⁵
C2 + fond1 : K2	6,4313 10 ⁴
C2 + fond2 : K2	6,4313 10 ⁴
POST_K1_K2_K3	
fond1: K1	2,4001 10 ⁵
fond2: K1	2,4001 10 ⁵
fond1: K2	6,4313 10 ⁴
fond2: K2	6,4313 10 ⁴

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 8/21 Clé : V6.03.138 Révision

Révision 35ed33f39c7d

Responsable : GÉNIAUT Samuel

Date: 12/10/2012 Page: 9/21 Clé: V6.03.138

Révision

35ed33f39c7d

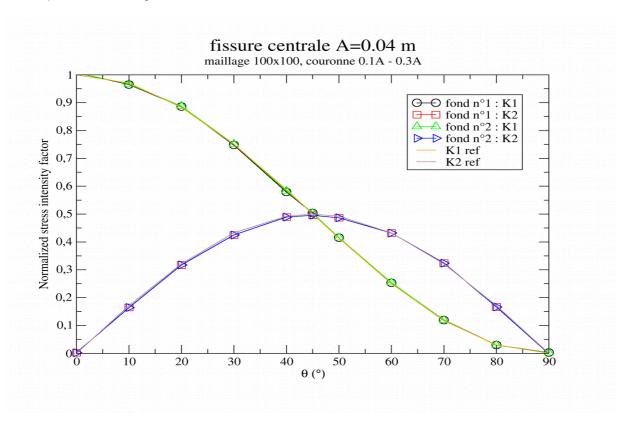
2.2.3 Résultats pour thêta= 30°

Identification	Référence	
CALC_G		
C1 + fond1 : K1	1,9294 10⁵	
C1 + fond2 : K1	1,9294 10⁵	
C1 + fond1 : K2	1,1139 10⁵	
C1 + fond2 : K2	1,1139 10⁵	
C2 + fond1 : K1	1,9294 10⁵	
C2 + fond2 : K1	1,9294 10⁵	
C2 + fond1 : K2	1,1139 10⁵	
C2 + fond2 : K2	1,1139 10⁵	
POST_K1_K2_K3		
fond1: K1	1,9294 10⁵	
fond2: K1	1,9294 10⁵	
fond1: K2	1,1139 10⁵	
fond2: K2	1,1139 10⁵	

2.2.4 Résultats pour thêta= 45°

Identification	Référence
CALC_G	
C1 + fond1 : K1	1,2863 10⁵
C1 + fond2 : K1	1,2863 10⁵
C1 + fond1 : K2	1,2863 10⁵
C1 + fond2 : K2	1,2863 10⁵
C2 + fond1 : K1	1,2863 10⁵
C2 + fond2 : K1	 1,2863 10⁵
C2 + fond1 : K2	1,2863 10⁵
C2 + fond2 : K2	1,2863 10⁵
POST_K1_K2_K3	
fond1: K1	1,2863 10⁵
fond2: K1	1,2863 10⁵
fond1: K2	1,2863 10⁵
fond2: K2	1,2863 10⁵

Date: 12/10/2012 Page: 10/21 Responsable : GÉNIAUT Samuel Révision Clé: V6.03.138


35ed33f39c7d

2.2.5 Résultats pour thêta= 60°

Identification	Référence
CALC_G	
C1 + fond1 : K1	6,4313 10 ⁴
C1 + fond2 : K1	6,4313 10 ⁴
C1 + fond1 : K2	1,1140 10⁵
C1 + fond2 : K2	1,1140 10⁵
C2 + fond1 : K1	6,4313 10 ⁴
C2 + fond2 : K1	6,4313 10 ⁴
C2 + fond1 : K2	1,1140 10⁵
C2 + fond2 : K2	1,1140 10⁵
POST_K1_K2_K3	
fond1: K1	6,4313 10 ⁴
fond2: K1	6,4313 10 ⁴
fond1: K2	1,1140 10 ⁵
fond2: K2	1,1140 10 ⁵

2.3 Résultats complémentaires

D'autres valeurs d'angles θ ont été testées par ailleurs, sans faire partie de ce test. Elles sont reportées sur la Figure 2.3-1.

Date: 12/10/2012 Page: 11/21 Révision Responsable : GÉNIAUT Samuel Clé: V6.03.138

35ed33f39c7d

Figure 2.3-1 : facteurs d'intensité des contraintes normalisés par K_I (thêta= 0°) obtenus par CALC $\,$ G pour la couronne $\,$ C $\,$ I

À titre d'illustration, la Figure 2.3-2 présente une vue de la déformée de la plaque pour un angle $\theta = 45^{\circ}$

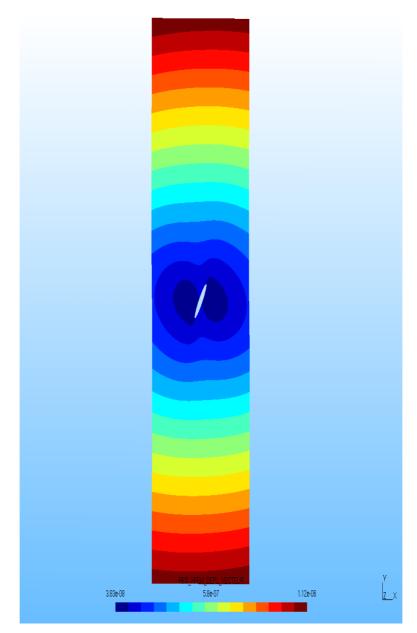


Figure 2.3-2 : déformée pour thêta= 45°

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 12/21 Clé : V6.03.138 Révision

Révision 35ed33f39c7d

3 Modélisation B

Dans cette modélisation, la méthode des éléments finis étendue (X-FEM) est utilisée. On définit un rayon d'enrichissement géométrique avec un nombre de couche d'élément égal à 3.

3.1 Caractéristiques du maillage

La structure est modélisée par un maillage régulier (identique à la modélisation A) composé de $100\times100\,$ QUAD4, respectivement suivant les axes x, y. La fissure n'est pas maillée.

3.2 Grandeurs testées et résultats

Pour chaque valeur de l'angle $\,\theta\,$ ($\,0\,^{\circ}\,$ et $\,45\,^{\circ}\,$), et pour chaque chargement : force interne ($\,FI\,$) et pesanteur ($\,PESA\,$), on teste la valeur du facteur d'intensité de contraintes $\,KI\,$ donnée par CALC_G (pour les deux fonds de fissure) ainsi que celle donnée par K1 de POST_K1_K2_K3 (pour le 2ème fond de fissure). On teste également la valeur de $\,G\,$ donnée par CALC_G, option CALC_G, que l'on compare à celle obtenue par CALC_G, option CALC_K G.

Pour la méthode $G-th\hat{e}ta$ (commande <code>CALC_G</code>), on choisit les couronnes de champ thêta suivantes : $R_{inf}\!=\!0,\!1\,a$ et $R_{\rm sup}\!=\!0,\!3\,a$;

Pour la méthode par extrapolation des sauts de déplacements (POST_K1_K2_K3), l'abscisse curviligne maximale est égale à $0.3\,a$.

3.2.1 Résultats pour $\theta = 0^{\circ}$

Identification	Code_Aster	Tolérance
CALC_G		
FI fond1 : K1	5013.598	0.1%
FI fond2 : K1	5013.586	0.1%
PES fond1 : K1	5013.598	0.1%
PES fond2 : K1	5013.586	0.1%
FI fond 1 : G	1.19751E-04	0.1%
PES fond 1 : G	1.19751E-04	0.1%
POST_K1_K2_K3		
FI fond2: K1	5069,12	0.1%
PES fond2: K1	5069,12	0.1%

3.2.2 Résultats pour $\theta = 45^{\circ}$

Identification	Code_Aster	Tolérance
CALC_G		
FI fond1 : K1	2454.40	0.1%
FI fond2 : K1	2592.14	0.1%
PES fond1 : K1	2454.40	0.1%
PES fond2 : K1	2592.14	0.1%
FI fond 1 : G	5.644E-05	0.1%
PES fond 1 : G	5.644E-05	0.1%

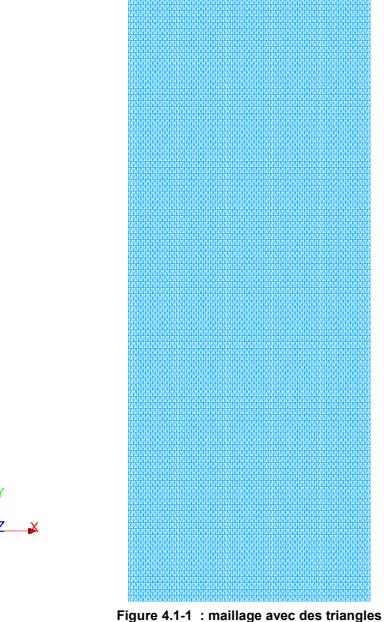
Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 13/21 Clé : V6.03.138 Révision

Révision 35ed33f39c7d

POST_K1_K2_K3		
FI fond2: K1	2589,86	0.1%
PES fond2: K1	2589,86	0.1%

Date: 12/10/2012 Page: 14/21 Responsable : GÉNIAUT Samuel Clé: V6.03.138 Révision


35ed33f39c7d

Modélisation C 4

Dans cette modélisation, la méthode des éléments finis étendue (X-FEM) est utilisée. On définit un rayon d'enrichissement géométrique avec un nombre de couche d'élément égal à 3.

4.1 Caractéristiques du maillage

Le domaine est maillé avec des triangles linéaires (mailles TRIA3). On conserve le raffinement des modélisations précédentes à savoir 100 quadrangles (scindés en 2 triangles) suivant l'axe X et 100 quadrangles (scindés en 2 triangles) suivant l'axe Y. La fissure n'est pas maillée.

4.2 Grandeurs testées et résultats

La fissure est inclinée suivant 3 valeurs angulaires : $\theta = 0^{\circ}$, 30° , 60°

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 15/21 Clé : V6.03.138 Révision

Révision 35ed33f39c7d

Pour chaque angle d'inclinaison, on teste les facteurs d'intensité de contrainte comme dans les modélisations A et B, par la méthode $G-th\hat{e}ta$ et par la méthode d'extrapolation des sauts de déplacements.

Pour la méthode $G-th\hat{e}ta$ (commande <code>CALC_G</code>), on choisit les couronnes de champ thêta suivantes : $R_{inf}=0.1\,a$ et $R_{\rm sup}=0.3\,a$.

4.2.1 Résultats pour $\theta = 0^{\circ}$

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	2,5725 10 ⁵	2,0%
C1 + fond2 : K1	2,5725 10 ⁵	2,0%
C1 + fond1 : K2	0	257
C1 + fond2 : K2	0	257
C1 + fond1 : G	0,29	2,0%
C1 + fond2 : G	0,29	2,0%
C2 + fond1 : K1	2,5725 10 ⁵	2,0%
C2 + fond2 : K1	2,5725 10 ⁵	2,0%
C2 + fond1 : K2	0	257
C2 + fond2 : K2	0	257
C2 + fond1 : G	0,29	2,0%
C2 + fond2 : G	0,29	2,0%
POST_K1_K2_K3		
C1 + fond1 : K1	2,5725 10 ⁵	2,0%
C1 + fond2 : K1	2,5725 10 ⁵	2,0%
C1 + fond1 : K2	0	514,5
C1 + fond2 : K2	0	514,5
C2 + fond1 : K1	2,5725 10 ⁵	2,0%
C2 + fond2 : K1	2,5725 10 ⁵	2,0%
C2 + fond1 : K2	0	514,5
C2 + fond2 : K2	0	514,5

Les valeurs nulles de K_2 sont testées en absolu avec une tolérance égale à $K_1^{ref}/1000$ pour CALC_G et une tolérance égale à $K_1^{ref}/500$ pour POST_K1_K2_K3.

4.2.2 Résultats pour $\theta = 30^{\circ}$

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	1,9294 10⁵	2,0%
C1 + fond2 : K1	1,9294 10⁵	2,0%
C1 + fond1 : K2	1,1139 10⁵	3,0%
C1 + fond2 : K2	1,1139 10⁵	3,0%

C1 Famal1 C	0.045	0.00/		
Titre : SSNP138 - Fissure inclinée en . Responsable : GÉNIAUT Samuel	2D avec X-FEM	Date : 12/10/2012 Clé : V6.03.138	Page : 1/21 Révision 35ed33f39c7d	:

C1 + fond1 : G	0,215	2,0%
C1 + fond2 : G	0,215	2,0%
C2 + fond1 : K1	1,9294 10⁵	2,0%
C2 + fond2 : K1	1,9294 10⁵	2,0%
C2 + fond1 : K2	1,1139 10⁵	3,0%
C2 + fond2 : K2	1,1139 10⁵	3,0%
C2 + fond1 : G	0,215	2,0%
C2 + fond2 : G	0,215	2,0%
POST_K1_K2_K3		
C1 + fond1 : K1	1,9294 10⁵	2,0%
C1 + fond2 : K1	1,9294 10⁵	2,0%
C1 + fond1 : K2	1,1139 10⁵	3,0%
C1 + fond2 : K2	1,1139 10⁵	3,0%
	-	
C2 + fond1 : K1	1,9294 10 ⁵	2,0%
C2 + fond1 : K1 C2 + fond2 : K1	1,9294 10 ⁵ 1,9294 10 ⁵	2,0%
C2 + fond2 : K1	1,9294 10⁵	2,0%

4.2.3 Résultats pour $\theta = 60^{\circ}$

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	6,431210⁵	2,0%
C1 + fond2 : K1	6,4312105	2,0%
C1 + fond1 : K2	1,1139 10⁵	3,0%
C1 + fond2 : K2	1,1139 10⁵	3,0%
C1 + fond1 : G	7,1692 10-2	2,0%
C1 + fond2 : G	7,1692 10-2	2,0%
C2 + fond1 : K1	6,431210 ⁵	2,0%
C2 + fond2 : K1	6,4312105	2,0%
C2 + fond1 : K2	1,1139 10⁵	3,0%
C2 + fond2 : K2	1,1139 10⁵	3,0%
C2 + fond1 : G	7,1692 10-2	2,0%
C2 + fond2 : G	7,1692 10-2	2,0%
POST_K1_K2_K3		
C1 + fond1 : K1	6,4312105	2,0%
C1 + fond2 : K1	6,4312105	2,0%
C1 + fond1 : K2	1,1139 105	3,0%
C1 + fond2 : K2	1,1139 105	3,0%
C2 + fond1 : K1	6,4312105	2,0%
C2 + fond2 : K1	6,4312105	2,0%
C2 + fond1 : K2	1,1139 105	3,0%
C2 + fond2 : K2	1,1139 10⁵	3,0%

Responsable : GÉNIAUT Samuel

Date: 12/10/2012 Page: 1/21 Clé: V6.03.138

Révision

35ed33f39c7d

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 2/21 Clé : V6.03.138 Révision

Révision 35ed33f39c7d

5 Modélisation D

Cette modélisation est identique à la modélisation C.

La seule différence est que l'on choisit ici un enrichissement topologique (une seule de couche d'éléments enrichis en fond de fissure).

On ne modélise que la fissure inclinée à 30°.

5.1 Grandeurs testées et résultats

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	1,9294 10⁵	0,5%
C1 + fond2 : K1	1,9294 10⁵	0,5%
C1 + fond1 : K2	1,1139 10⁵	3,0%
C1 + fond2 : K2	1,1139 10⁵	3,0%
C1 + fond1 : G	0,215	4,0%
C1 + fond2 : G	0,215	4,0%
C2 + fond1 : K1	1,9294 10⁵	0,5%
C2 + fond2 : K1	1,9294 10⁵	0,5%
C2 + fond1 : K2	1,1139 10⁵	3,0%
C2 + fond2 : K2	1,1139 10⁵	3,0%
C2 + fond1 : G	0,215	4,0%
C2 + fond2 : G	0,215	4,0%
POST_K1_K2_K3		
C1 + fond1 : K1	1,9294 10⁵	6,0%
C1 + fond2 : K1	1,9294 10⁵	6,0%
C1 + fond1 : K2	1,1139 10⁵	6,0%
C1 + fond2 : K2	1,1139 10⁵	6,0%
C2 + fond1 : K1	1,9294 10⁵	6,0%
C2 + fond2 : K1	1,9294 10⁵	6,0%
C2 + fond1 : K2	1,1139 10⁵	6,0%
C2 + fond2 : K2	1,1139 10 ⁵	6,0%

Responsable : GÉNIAUT Samuel

Date : 12/10/2012 Page : 1/21 Clé : V6.03.138 Révision

35ed33f39c7d

6 Modélisation E

Cette modélisation est identique à la modélisation E. La seule différence est que l'on choisit ici des mailles quadratiques (TRIA6).

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	1,9294 10⁵	0,5%
C1 + fond2 : K1	1,9294 10⁵	0,5%
C1 + fond1 : K2	1,1139 10⁵	2,0%
C1 + fond2 : K2	1,1139 10⁵	2,0%
C1 + fond1 : G	0,215	0,6%
C1 + fond2 : G	0,215	0,6%
C2 + fond1 : K1	1,9294 10⁵	0,5%
C2 + fond2 : K1	1,9294 10 ⁵	0,5%
C2 + fond1 : K2	1,1139 10⁵	2,0%
C2 + fond2 : K2	1,1139 10⁵	3,0%
C2 + fond1 : G	0,215	0,6%
C2 + fond2 : G	0,215	0,6%
POST_K1_K2_K3		
C1 + fond1 : K1	1,9294 10⁵	0,2%
C1 + fond2 : K1	1,9294 10 ⁵	0,2%
C1 + fond1 : K2	1,1139 10⁵	1,5%
C1 + fond2 : K2	1,1139 10⁵	1,5%
C2 + fond1 : K1	1,9294 10⁵	0,2%
C2 + fond2 : K1	1,9294 10⁵	0,2%
C2 + fond1 : K2	1,1139 10⁵	1,5%
C2 + fond2 : K2	1,1139 10⁵	1,5%

Date: 12/10/2012 Page: 1/21 Révision Responsable : GÉNIAUT Samuel Clé: V6.03.138

35ed33f39c7d

Modélisation F 7

Cette modélisation est similaire à la modélisation D (mailles TRIA3, enrichissement topologique), mais le chargement est appliqué via une pression sur les lèvres de la fissure. Seule la fissure horizontale est testée.

7.1 Grandeurs testées et résultats

Identification	Référence	Tolérance
CALC_G		
C1 + fond1 : K1	2,5725 10⁵	2,0%
C1 + fond2 : K1	2,5725 10⁵	2,0%
C1 + fond1 : K2	0	257
C1 + fond2 : K2	0	257
C1 + fond1 : G	0,29	9,0%
C1 + fond2 : G	0,29	9,0%
C2 + fond1 : K1	2,5725 10⁵	2,0%
C2 + fond2 : K1	2,5725 10⁵	2,0%
C2 + fond1 : K2	0	257
C2 + fond2 : K2	0	257
C2 + fond1 : G	0,29	9,0%
C2 + fond2 : G	0,29	9,0%
POST_K1_K2_K3		
C2 + fond1 : K1	2,5725 10⁵	10,0%
C2 + fond2 : K1	2,5725 10⁵	10,0%
C2 + fond1 : K2	0	257
C2 + fond2 : K2	0	257

Les résultats sont moins précis que ceux de la modélisation D.

En effet, lorsque l'on impose une pression sur les lèvres de la fissure, il est nécessaire d'utiliser de petites couronnes.

Date: 12/10/2012 Page: 1/21 Responsable : GÉNIAUT Samuel Clé: V6.03.138 Révision

35ed33f39c7d

8 Synthèses des résultats

Les objectifs de ce test sont atteints :

- Valider sur un cas simple le calcul des facteurs d'intensité de contraintes en mode mixte pour les éléments X-FEM linéaires et quadratiques
- Tester la non régression des forces volumiques imposées sur une fissure X-FEM

Bilan sur les éléments linéaires

Avec la commande CALC G, on obtient une bonne précision sur K_I et K_{II} (2 à 3%) avec des éléments linéaires (triangles ou quadrangles), quelque soit le type d'enrichissement en fond de fissure (topologique ou géométrique).

Par contre, avec la commande POST K1 K2 K3, l'activation de l'enrichissement géométrique améliore significativement la solution par rapport à l'enrichissement topologique par défaut (5 à 6% \rightarrow 2 à 3%).

Il est donc recommander d'utiliser l'enrichissement par défaut (topologique) et un post-traitement avec CALC G. Si pour une quelconque raison, on souhaite post-traiter avec POST K1 K2 K3, alors il est préférable d'activer l'enrichissement géométrique.

Bilan sur les éléments quadratiques

Les éléments quadratiques (avec enrichissement topologique) permettent de retrouver des résultats aussi précis que les éléments linéaires avec enrichissement géométrique, mais pour une taille du système à résoudre bien plus grande.

Comparaison des erreurs relatives pour la fissure inclinée à 30°.

	TRIA3 + topologique (Modélisation D)	TRIA3 + géométrique (Modélisation C)	TRIA6 + topologique (Modélisation E)
Taille du système	20788 ddls	21396 ddls	82032 ddls
CALC_G: K_I	0,5%	0,2%	0,3%
CALC_G: K_{II}	2,0%	2,0%	2,0%
CALC_G: G	4,0%	1,0%	0,6%
post_k1_k2_k3: K_I	6,0%	0,2%	0,2%
post_k1_k2_k3: K_{II}	6,0%	3,0%	1,5%