Date: 03/08/2011 Page: 1/6

Révision 054678e2a3c0

Titre : SSNP05 - Plaque en traction-cisaillement : viscoél[...]

Responsable : DE BONNIÈRES Philippe Clé : V6.03.005

SSNP05 - Plaque en traction-cisaillement : viscoélasticité de Lemaître

Résumé:

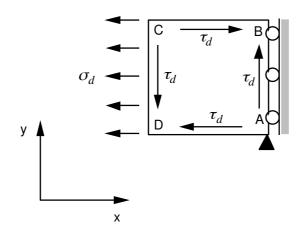
Ce test de mécanique quasi-statique non linéaire consiste à charger en traction-cisaillement une plaque carrée. On valide ainsi la relation de comportement de viscoélasticité non linéaire de Lemaître (en 3D) pour un chargement non radial. Ce test est tiré du guide VPCS de la Société Française de Mécanique.

La plaque est modélisé par un élément volumique (HEXA8).

Les résultats obtenus par Code_Aster sont très proches de la solution de référence.

Titre: SSNP05 - Plaque en traction-cisaillement: viscoél[...]

Responsable : DE BONNIÈRES Philippe


Date: 03/08/2011 Page: 2/6 Clé: V6.03.005 Révision

054678e2a3c0

1 Problème de référence

1.1 Géométrie

Plaque carrée

1.2 Propriétés de matériaux

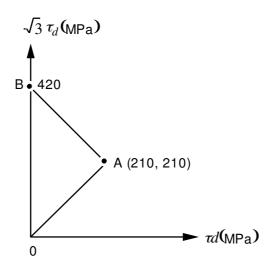
E = 178600 MPa

v = 0.3

Relation de comportement viscoélastique de Lemaître

$$n = 11$$
 $\frac{1}{K} = 3.28410^{-4} \quad (K = 3045)$ $\frac{1}{m} = 0.17857 (m = 5.6)$

1.3 Conditions aux limites et chargements


 $Sur A: u_x = u_y = 0$

Sur le côté AB : $u_x = 0$

Chargement ci-dessous:

Trajets OA et AB, de durée 30 secondes,

Temps de maintien en A et B de 3600 secondes

Titre : SSNP05 - Plaque en traction-cisaillement : viscoél[...]

Responsable : DE BONNIÈRES Philippe

Date : 03/08/2011 Page : 3/6 Clé : V6.03.005 Révision

054678e2a3c0

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Calcul effectué avec différents codes d'éléments finis utilisant différents algorithmes explicites, semi-implicites ou implicites.

2.2 Résultats de référence

$$\varepsilon_{v_{xx}}$$
 et $\varepsilon_{v_{xy}}$ aux instants $t\!=\!30\,s$, $t\!=\!3630\,s$, $t\!=\!3660\,s$ et $t\!=\!3720\,s$

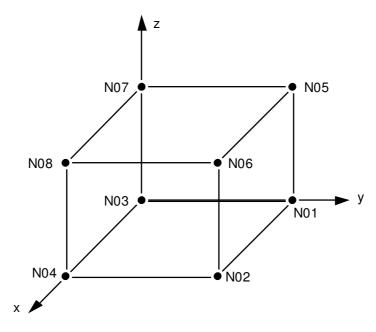
2.3 Incertitude sur la solution

Incertitude inférieure à 0.01% .

2.4 Références bibliographiques

• Fiche SSNP05/89 de la Commission VPCS

Titre: SSNP05 - Plaque en traction-cisaillement: viscoél[...]


Responsable : DE BONNIÈRES Philippe Clé : V6.03.005

Date : 03/08/2011 Page : 4/6 Clé : V6.03.005 Révision

054678e2a3c0

3 Modélisation A

3.1 Caractéristiques de la modélisation

Le chargement et les conditions aux limites sont modélisés par :

DDL_IMPO: (NOEUD: N04, DX: 0., DY:0.)
DDL_IMPO: (NOEUD: N08, DX: 0., DY:0., DZ:0.)
DDL_IMPO: (NOEUD: N02, DX: 0.)
DDL_IMPO: (NOEUD: N06, DX: 0.)

FORCE_NODALE: (NOEUD: (N01 N03 N05 N07), FX:
$$-\frac{1}{4}\sigma_{d}(t)$$
, FY: $-\frac{1}{4}\tau_{d}(t)$)

FORCE_NODALE: (NOEUD: (N03 N04 N07 N08), FX: $-\frac{1}{4}\tau_{d}(t)$)

FORCE_NODALE: (NOEUD: (N02 N04 N06 N08), FY: $\frac{1}{4}\tau_{d}(t)$)

FORCE_NODALE: (NOEUD: (N01 N02 N05 N06), FX: $\frac{1}{4}\tau_{d}(t)$)

3.2 Caractéristiques du maillage

Nombre de nœuds : 8

Nombre de mailles et types : 1 HEXA8

Titre : SSNP05 - Plaque en traction-cisaillement : viscoél[...]

Responsable : DE BONNIÈRES Philippe

Date: 03/08/2011 Page: 5/6 Clé: V6.03.005 Révision

Révision 054678e2a3c0

3.3 Grandeurs testées et résultats

Variables	Instants (s)	Référence	Aster	% différence
$\mathcal{E}_{\mathcal{V}_{\chi\chi}}$	30	2.465 10-4	2.457 10 -4	0.333%
$\mathcal{E}_{\mathcal{V}_{xy}}$	30	2.135 10 -4	2.128 10-4	0.333%
$\mathcal{E}_{v_{xx}}$	3630	2.867 10 ⁻³	2.876 10-3	0.316%
$rac{arepsilon_{\mathcal{V}_{xx}}}{arepsilon_{\mathcal{V}_{xy}}}$	3630	2.483 10 ⁻³	2.491 10 ⁻³	0.326%
$\mathcal{E}_{\mathcal{V}_{\chi\chi}}$	3660	2.879 10 ⁻³	2.889 10-3	0.337%
	3660	2.565 10-3	2.562 10-3	-0.101%
$rac{\mathcal{E}_{\mathcal{V}_{xy}}}{\mathcal{E}_{\mathcal{V}_{xx}}}$	3720	2.879 10 ⁻³	2.889 10-3	0.337%
$\overline{\mathcal{E}_{\mathcal{V}_{_{_{XV}}}}}$	3720	3.272 10-3	3.271 10 ⁻³	-0.037%

Version default

Titre: SSNP05 - Plaque en traction-cisaillement: viscoél[...]

Responsable : DE BONNIÈRES Philippe

Date : 03/08/2011 Page : 6/6 Clé : V6.03.005 Révision

Révision 054678e2a3c0

4 Synthèse des résultats

La précision requise pour ce test a été fixée à 0.5% au lieu de 0.1% pour ne pas trop allonger le temps de calcul. Toutefois, on vérifie qu'en raffinant la discrétisation en temps, l'erreur commise par rapport à la solution de référence tend vers zéro.