Titre : SSNL101 - Comportement non-linéaire d'un élément d[...]

Responsable : FLÉJOU Jean-Luc

Date : 01/08/2011 Page : 1/5 Clé : V6.02.101 Révision

32265648dda8

SSNL101 - Comportement non-linéaire d'un élément d'armement de ligne

Résumé:

On considère dans ce test, 1 élément discret à 2 nœuds soumis à un effort transversal en analyse statique non linéaire.

L'élément a un comportement régi par une relation non linéaire exprimée en effort et déplacement unidirectionnel dans la direction transversale et locale ν .

L'intérêt du test est de simuler de manière exhaustive les trajets de chargement possible, en charge et décharge, dans chacun des domaines de la relation de comportement : élastique, plastique et ultime.

La dimension réduite du problème à une inconnue (le déplacement transversal de l'extrémité) permet d'avoir comme solution le résultat d'une expression algébrique exactement retrouvée par *Aster*.

Titre: SSNL101 - Comportement non-linéaire d'un élément d[...]

Date: 01/08/2011 Page: 2/5 Clé: V6.02.101 Révision Responsable : FLÉJOU Jean-Luc

32265648dda8

Problème de référence

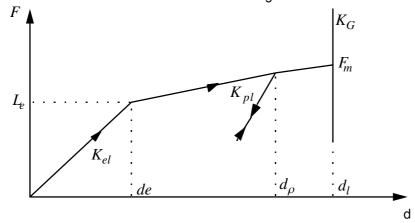
1.1 Géométrie

Un élément discret de taille nulle à 2 nœuds.

Repère local = repère global.

Une matrice de rigidité K TR D L affectée par défaut :

1.6 N/m en translation, 1.9 N/m en rotation.


Les caractéristiques de rigidité selon la direction locale y (ici égale à l'axe global Y) sont modifiées par une relation de comportement de type ARME en effort-déplacement introduite par un matériau caractéristique.

1.2 Propriétés de matériaux

Liées à un comportement incrémental ARME à 5 paramètres : d_e (mot-clé DLE) = $0.048 \, m$, d_e (motclé DLP) = $0.7\,m$, K_{el} (mot clé KYE) = $1.67\,E4\,N/m$, K_{pl} (mot clé KYP) = $2.9\,E3\,N/m$, K_{G} (mot clé KYG) = 1 E6 N/m.

- $d_{_{\it e}}$ déplacement limite du domaine élastique,
- d_{I} déplacement limite du domaine plastique,
- K_{el} pente du domaine élastique,
- K_{nl} pente du domaine plastique,
- $K_{\scriptscriptstyle G}$ pente ultime,

Comportement d'un bras d'armement en sollicitation longitudinale

 $d_e = 0.048 \, m$, $d_l = 0.7 \, m$, $L_e = 800 \, N$, $F_m = 2800 \, N$

Comportement unidirectionnel en force-déplacement à 1 variable interne : $d_{p}-d_{e}$ défini par 5 paramètres : $d_{\it e}$, $d_{\it l}$, $K_{\it el}$, $K_{\it pl}$ et $K_{\it G}$, affecté à un élément discret à 2 nœuds.

1.3 **Conditions aux limites et chargements**

Encastrement en un des 2 nœuds.

Force imposée dans la direction locale y (identique au Y global) sur le second nœud, par incréments de charge. Un incrément unitaire valant $500 \ N$.

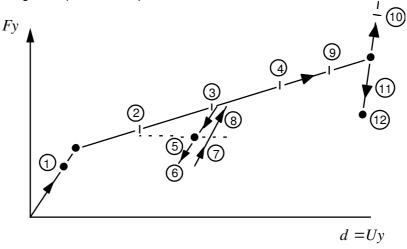
Conditions initiales 1.4

Déplacements, efforts et variables internes nuls.

Titre : SSNL101 - Comportement non-linéaire d'un élément d[...]

Responsable : FLÉJOU Jean-Luc Clé : V6.02.101

Date : 01/08/2011 Page : 3/5 Clé : V6.02.101 Révision


32265648dda8

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

On reproduit sur un élément un parcours de chargement dans chacun des 3 domaines (élastique, plastique, limite) d'une relation de comportement unidirectionnelle (direction locale y). Les paramètres sont décrits sur la figure 1 jointe.

Le trajet de charge comporte 12 étapes ainsi définies :

2.2 Résultats de référence

Calculs directs sur la courbe limite de la relation de comportement :

$$F_{v} = k_{el} \cdot U_{v}$$
 si $U_{v} < d_{e}$

$$F_{v} = k_{el} \cdot d_{e} + k_{pl} (U_{v} - d_{e}) \text{ si } U_{v} \in [d_{e}, d_{l}]$$

$$Vari = U_v - d_e$$

 $Varimax = d_l - d_e$

$$F_y = k_{el} \cdot d_e + k_{pl} (d_l - d_e) + k_G (U_y - d_l)$$
 si $Vari = Varimax$

2.3 Incertitude sur la solution

Solution exacte : F_y imposée et U_y déduit directement des relations en [§2.2].

2.4 Références bibliographiques

Note HM-77/94/368, G. DEVESA. "Étude dynamique de rupture de conducteur et de décharge de givre sur une ligne expérimentale à moyenne tension".

Titre: SSNL101 - Comportement non-linéaire d'un élément d[...]

Date: 01/08/2011 Page: 4/5 Responsable: FLÉJOU Jean-Luc Clé: V6.02.101

Révision 32265648dda8

Modélisation A 3

3.1 Caractéristiques de la modélisation

Un élément DIS TR L à 2 nœuds de taille nulle (idem [§1.1]).

Un nœud N2 : on bloque tout.

Un nœud N3 : on impose Fy par pas de 500~N avec la carte de temps :

Caractéristiques du maillage 3.2

1 SEG2.

2 nœuds.

3.3 Grandeurs testées et résultats

Identification	Référence	Aster	% différence
Déplacement Uy : Nœud N3, Ordre 2 $\left F_y=1000\mathrm{N}\right $	1,16E-001	idem	0
Déplacement Uy : Nœud N3, Ordre 8 F_y =2000N	4,61E-001	idem	0
Déplacement Uy : Nœud N3, Ordre 10 $(F_y=3000\mathrm{N})$	7,00E-001	idem	0
Variable interne 1 : Ordre 2 $(F_y = 1000N)$	6,84E-002	idem	0
Variable interne 1 : Ordre 8 $(F_y = 2000N)$	4,13E-001	idem	0
Variable interne 1 : Ordre 10 $(F_v = 3000N)$	5,20E-002	idem	0

3.4 Remarques

Générale:

Le comportement ARME est utilisable également en Analyse dynamique non-linéaire mais n'est pas testé.

Titre : SSNL101 - Comportement non-linéaire d'un élément d[...]

Responsable : FLÉJOU Jean-Luc

Date: 01/08/2011 Page: 5/5 Clé: V6.02.101

Révision

32265648dda8

Synthèse des résultats 4

La dimension réduite du problème permet de n'avoir qu'une inconnue, le déplacement transversal $U_{_{\scriptscriptstyle V}}$ lié à la variable interne, solution exacte calculable par une expression algébrique et retrouvée par Aster à l'identique.