Titre : SSNA108 - Modèles de Weibull et de Rice et Tracey

Responsable : PARROT Aurore

Date : 29/05/2013 Page : 1/4 Clé : V6.01.108 Révision

023cdf2cab95

# SSNA108 - Modèles de Weibull, Bordet et de Rice et Tracey

## Résumé:

Ce test de mécanique quasi - statique non linéaire permet de valider les modèles de Weibull et de Rice - Tracey en 2D (commande POST\_ELEM) et de Bordet (commande CALC\_BORDET) dans le cas d'une éprouvette axisymétrique entaillée soumise à un essai de traction simple.

La modélisation de l'éprouvette est réalisée avec des éléments 2D (QUA8).

Titre: SSNA108 - Modèles de Weibull et de Rice et Tracey

Date: 29/05/2013 Page: 2/4 Clé: V6.01.108 Révision Responsable: PARROT Aurore

023cdf2cab95

#### Problème de référence 1

#### 1.1 Géométrie

On considère une éprouvette cylindrique entaillée :

diamètre de l'éprouvette : 18 mm,

rayon de l'entaille : 5 mm .

#### 1.2 Propriétés du matériau

On adopte une loi de comportement élasto-plastique de Von Mises à écrouissage isotrope TRACTION dont la courbe de traction est donnée point par point :

| 3 |        | 0.00  | 27  | 0.005 | 0.01  | 0.015 | 0.02 | 0.025 | 0.03  | 0.04 | 0.05 | 0.075 | 0.1 |  |
|---|--------|-------|-----|-------|-------|-------|------|-------|-------|------|------|-------|-----|--|
| σ | · (MPa | ) 555 |     | 589   | 631   | 657   | 676  | 691   | 704   | 725  | 741  | 772   | 794 |  |
|   |        |       |     |       |       |       |      |       |       |      |      |       |     |  |
|   | 0.125  | 0.15  | 0.2 | 0.3   | 0.4   | 0.5   | 0.6  | 0.7   | 0.8   | 0.9  |      |       |     |  |
|   | 812    | 827   | 851 | 887   | 7 912 | 933   | 950  | 965   | 5 978 | 990  | )    |       |     |  |

Les déformations utilisées dans la relation de comportement sont les déformations linéarisées. Le module d'Young E s'élève à  $200\,GPa$  tandis que le coefficient de poisson  $\nu$  vaut 0.3.

Les coefficients des modèles de Weibull et de Bordet utilisés sont les suivants :

$$m=8$$
,  
 $V_0=100 \,\mu m$ ,  
 $\sigma_u=2630 \,MPa$ ,  
 $\sigma_{ys,0}=\sigma_{ys}555 \,MPa$ ,  
 $\sigma_{th}=600 \,MPa$ .

#### 1.3 **Conditions aux limites et chargements**

En se rapportant à la figure du [§3.1] les conditions aux limites sont les suivantes :

- BC: déplacement imposé suivant (Y),
- OA: déplacements bloqués suivant (Y),
- OB: déplacements bloqués suivant (X).

#### 1.4 **Conditions initiales**

Contraintes et déformations nulles.

Titre : SSNA108 - Modèles de Weibull et de Rice et Tracey

Responsable: PARROT Aurore

Date : 29/05/2013 Page : 3/4 Clé : V6.01.108 Révision

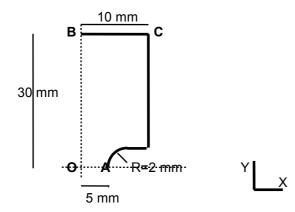
023cdf2cab95

# 2 Solution de référence

# 2.1 Méthode de calcul

Solution numérique calculée par CASTEM2000 et Zébulon pour les modèles de Weibull et de Rice et Tracey ; test de non régression pour le modèle de Bordet.

# 2.2 Grandeurs et résultats de référence


Les contraintes de Weibull (WEIBULL) et de Bordet ainsi que le taux de triaxialité (RICE\_TRACEY) sur différentes mailles ont été calculés à différents instants.

# 2.3 Incertitudes sur la solution

Précision des codes.

# 3 Modélisation A

# 3.1 Caractéristiques du maillage



# 3.2 Caractéristiques du maillage

Nombre de nœuds : 1219

Nombre de mailles et types : 320 (QUA8).

## 3.3 Grandeurs testées et résultats

L'écart constaté avec la solution de référence reste inférieur à 1%.

# 4 Résultats de la modélisation A

## 4.1 Valeurs testées

On teste les paramètres de la structure de données résultats :

| Identification            | Référence | Test           | Tolérance |  |
|---------------------------|-----------|----------------|-----------|--|
| INST pour NUME_ORDRE= 1 0 | 10,0      | ANALYTIQUE     | 0,10 %    |  |
| ITER_GLOB                 | 8         | NON_REGRESSION | 0,00%     |  |

Titre : SSNA108 - Modèles de Weibull et de Rice et Tracey

Responsable: PARROT Aurore

Date : 29/05/2013 Page : 4/4 Clé : V6.01.108 Révision

Révision 023cdf2cab95

#### Modèle de Weibull:

| Identifica     | ation        | Référence   | Test       | Tolérance       |
|----------------|--------------|-------------|------------|-----------------|
| C ontrainte de | Weibull pour | 1,4079E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 2,0     |              |             |            |                 |
| C ontrainte de | Weibull pour | 2,4973E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 4,0     |              |             |            |                 |
| C ontrainte de | Weibull pour | 3,3332E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 6.0     |              |             |            |                 |
| C ontrainte de | Weibull pour | 3,7537E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 8.0     |              |             |            |                 |
| C ontrainte de | Weibull pour | 4,0477E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 10,0    |              |             |            |                 |

## Modèle de Rice-Tracey :

| Identification                  | Référence   | Test       | Tolérance       |
|---------------------------------|-------------|------------|-----------------|
| Taux de croissance de la cavité | 1,0000E+000 | NON_DEFINI | 0,1 % (relatif) |
| pour $INST = 1,0$               |             |            |                 |
| Volume de la cavité pour        | 3,7500E+000 | NON_DEFINI | 0,1 % (relatif) |
| INST = 1,0                      |             |            |                 |
| Taux de croissance de la cavité | 1,0014E+000 | NON_DEFINI | 0,1 % (relatif) |
| pour $INST = 3.0$               |             |            |                 |
| Volume de la cavité pour        | 6,2372E-001 | NON_DEFINI | 0,1 % (relatif) |
| INST = 3.0                      |             |            |                 |
| Taux de croissance de la cavité | 1,0076E+000 | NON_DEFINI | 0,1 % (relatif) |
| pour $INST = 5,0$               |             |            |                 |
| Taux de croissance de la cavité | 1,0170E+000 | NON_DEFINI | 0,1 % (relatif) |
| pour $INST = 7,0$               |             |            |                 |
| Taux de croissance de la cavité | 1,0315E+000 | NON_DEFINI | 0,1 % (relatif) |
| pour $INST = 10,0$              |             |            |                 |

### Modèle de Bordet :

| ldentifi      | cation |      | Référence   | Test       | Tolérance       |
|---------------|--------|------|-------------|------------|-----------------|
| Contrainte de | Bordet | pour | 0,0000E+000 | NON_DEFINI | 0,1 % (relatif) |
| INST=2,0      |        |      |             |            |                 |
| Contrainte de | Bordet | pour | 7,2180E+002 | NON_DEFINI | 0,1 % (relatif) |
| INST = 4,0    |        |      |             | _          |                 |
| Contrainte de | Bordet | pour | 1,3024E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 6,0    |        |      |             | _          |                 |
| Contrainte de | Bordet | pour | 1,7305E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 8,0    |        |      |             | _          |                 |
| Contrainte de | Bordet | pour | 2,0225E+003 | NON_DEFINI | 0,1 % (relatif) |
| INST = 10,0   |        |      |             |            |                 |

# 5 Synthèse des résultats

Les résultats obtenus par *Code\_Aster* sont proches de la solution de référence puisque l'écart avec la solution de référence est inférieur à 1%.