Titre : TPLV304 - Distribution de la température dans une [...]

Responsable: HAELEWYN Jessica

Date: 02/02/2011 Page: 1/6 Clé: V4.04.304 Révision

f46d15b5e39c

TPLV304 - Distribution de la température dans une barre de section carrée

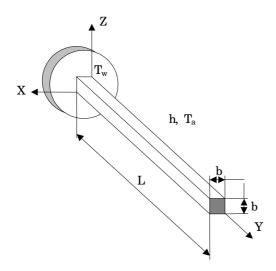
Résumé:

Ce test est issu de la validation indépendante de la version 3 en thermique stationnaire linéaire.

Il a pour objectif de valider les éléments thermiques volumiques sous des conditions de convection et de température imposée.

La solution de référence est basée sur une approche analytique.

Titre: TPLV304 - Distribution de la température dans une [...]


Responsable : HAELEWYN Jessica

Date : 02/02/2011 Page : 2/6 Clé : V4.04.304 Révision

f46d15b5e39c

1 Problème de référence

1.1 Géométrie

 $L = 203.2 \text{ x} 10^{-3} \text{ m}$ $b = 25.4 \text{ x} 10^{-3} \text{ m}$

1.2 Propriétés du matériau

 $\lambda = 43.2675 \, W/m.^{\circ} C$ Conductivité thermique

1.3 Conditions aux limites et chargements

- température imposée sur la face y=0 $T_w=37.78 \,^{\circ} C$,
- $\Phi = 0$ sur la face y = L,
- convection sur les autres faces :
 - $h=5.678 W/m^2 \circ C$,
 - $T_a = -17.780 \,{}^{\circ}C$.

1.4 Conditions initiales

Sans objet.

Titre : TPLV304 - Distribution de la température dans une [...]

Responsable : HAELEWYN Jessica

Date : 02/02/2011 Page : 3/6 Clé : V4.04.304 Révision

f46d15b5e39c

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence originale donnée dans le livre [bib1] est basée sur une approche analytique. Cette référence est citée dans le manuel de vérification d'ANSYS [bib2]

2.2 Résultats de référence

Température sur la face y=l

2.3 Incertitude sur la solution

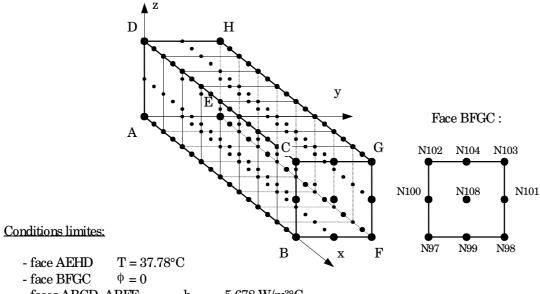
Inconnue, il n'a pas été possible de se procurer la référence originale (livre ancien, plus édité).

2.4 Références bibliographiques

- [1] ANSYS: "Verification manual", 1 st edition, June 1, 1976
- [2] Kreith, F., " Principles of heat transfer", International Textbook Co., Scranton, Pennsylvania, 2nd Printing, 1959.

Titre: TPLV304 - Distribution de la température dans une [...]

Responsable : HAELEWYN Jessica


Date : 02/02/2011 Page : 4/6 Clé : V4.04.304 Révision

f46d15b5e39c

3 Modélisation A

3.1 Caractéristiques de la modélisation

3D (HEXA27)

- faces ABCD, ABFE, EFGH, DCGH

 $h = 5.678 \text{ W/m}^{2} ^{\circ} \text{C}$ $T_{\text{ext}} = -17.78 ^{\circ} \text{C}$

3.2 Caractéristiques du maillage

Nombre de nœuds : 153

Nombre de mailles et types : 8 HEXA27 (et 32 QUAD9)

3.3 Grandeurs testées et résultats

Identification		Référence	Aster	Ecart relatif (%)		Ecart absolu (°C)	
				différence	tolérance	différence	tolérance
Température $(\circ C)$							
à l'extrémité de la barre							
Y = L		20.329					
В	N97	20.329	20.295	~0.166	1%	0.0338	0.5
milieu BF	N99	20.329	20.327	0.010	1%	0.0021	0.5
F	N98	20.329	20.295	~0.166	1%	0.0338	0.5
milieu FG	N101	20.329	20.327	0.010	1%	0.0021	0.5
G	N103	20.329	20.295	~0.166	1%	0.0338	0.5
milieu GC	N104	20.329	20.327	0.010	1%	0.0021	0.5
С	N102	20.329	20.295	~0.166	1%	0.0338	0.5
milieu CB	N100	20.329	20.327	0.010	1%	0.0021	0.5
milieu de la face	N108	20.329	20.359	0.146	1%	0.0297	0.5

3.4 Remarques

Titre: TPLV304 - Distribution de la température dans une [...]

Responsable: HAELEWYN Jessica

Date: 02/02/2011 Page: 5/6 Clé: V4.04.304 Révision

Révision f46d15b5e39c

La chaleur volumique ρ C_P n'intervient pas dans ce test, mais doit être déclarée pour *Code_Aster*. On prend ρ C_P =1.0 J/m^3 $^{\circ}$ C .

La condition limite $\varphi = 0$ est implicite sur les bords libres.

Les petites différences qui subsistent correspondent à un gradient de température dans la section observée. Ce qui est conforme au phénomène physique modélisé.

Version default

Titre: TPLV304 - Distribution de la température dans une [...]

Responsable: HAELEWYN Jessica

Date : 02/02/2011 Page : 6/6 Clé : V4.04.304 Révision

Révision f46d15b5e39c

4 Synthèse des résultats

Les résultats obtenus sont très satisfaisants, l'écart maximum est de -0.166% . L'intérêt principal de ce test est de vérifier la maille HEXA27.