Responsable : HAELEWYN Jessica

Date: 12/12/2011 Page: 1/6 Clé: V4.04.106 Révision

ae13aef25c99

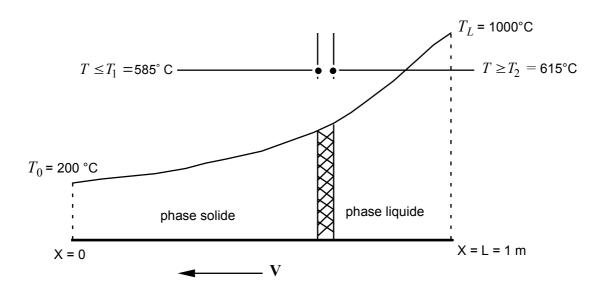
TPLV106 - Thermique non linéaire stationnaire en repère mobile

Résumé:

Ce test élémentaire permet de traiter un exemple tridimensionnel réductible à un problème à une variable d'espace en thermique non linéaire stationnaire en repère mobile (problème de convection-diffusion).

Il permet également de vérifier la prise en compte d'un changement de phase solide/liquide par Code Aster.

La solution de référence est analytique et les écarts avec les résultats obtenus par *Code_Aster* sont inférieurs à 1%. Le problème est modélisé dans le cas plan.


Date: 12/12/2011 Page: 2/6 Responsable: HAELEWYN Jessica Clé: V4.04.106 Révision

ae13aef25c99

Problème de référence

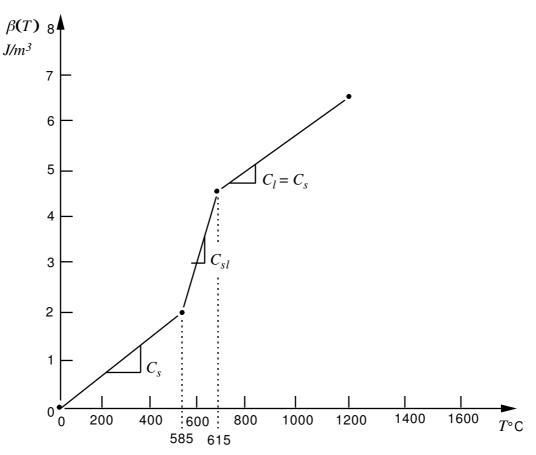
1.1 Géométrie

Soit une barre se déplaçant, à la vitesse $\ V$, au droit de conditions de températures imposées en X=0 et X=L exprimées dans un référentiel fixe (par rapport à la barre se déplaçant).

Propriétés des matériaux 1.2

- la conductivité thermique est constante : $K = 150 W/m^{\circ} C$
- la fonction enthalpie est telle que :

$$\beta\left(T\right) = \begin{cases} C_{S}T & ; T \leq T_{1} \\ C_{S}T + C_{SI}(T - T_{1}) & ; T_{1} \leq T \leq T_{2} \\ C_{S}T + C_{SI}(T_{2} - T_{1}) + C_{I}(T - T_{2}) & ; T_{1} \leq T \leq T_{2} \end{cases}$$


avec les valeurs suivantes :

$$C_S = C_I = 1/3.10^7 J/m^3 \circ C$$

 $C_{SI} = 8.33310^7 J/m^3 \circ C$
 $T_1 = 585. \circ C$
 $T_2 = 615 \circ C$

Responsable : HAELEWYN Jessica

Date : 12/12/2011 Page : 3/6 Clé : V4.04.106 Révision

ae13aef25c99

1.3 Conditions aux limites et chargements

Températures imposées aux extrémités

$$T_0 = 200 \,^{\circ} C$$
 pour $x = 0$

$$T_L = 1000 \,^{\circ} C$$
 pour $x = L = 1$ m

Vitesse de déplacement du solide : $V=10^{-4} m/s$

Responsable : HAELEWYN Jessica

Date : 12/12/2011 Page : 4/6 Clé : V4.04.106 Révision

ae13aef25c99

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Le résultat de référence est du type semi-analytique. L'équation 1D à résoudre est la suivante :

$$\begin{cases} V\,\beta\left(T\right)_{,\,x} - K\,T_{\,,\,xx} = 0\\ \operatorname{avec}\,T_{\,(x=0)} = T_{\,0}\operatorname{et}\,T_{\,(x=L)} = T_{\,L} \end{cases} \qquad \text{ éq 2.1-1}$$

en intégrant l'équation [éq 2.1-1] on obtient :

$$\frac{V}{K}\beta(T) - \frac{dT}{dx} = A$$
 éq 2.1-2

où A est une constante dépendant des conditions aux limites, du rapport $\frac{V}{K}$ et de la fonction enthalpie $\beta\left(T\right)$.

Cette constante sera déterminée analytiquement.

L'équation [éq 2.1-2] conduit à :

$$x = \int_{T_0}^{T(x)} \frac{dT}{A + \frac{V}{K} \beta(T)}$$
 éq 2.1-3

qui doit vérifier :

$$L = \int_{T_0}^{T_L} \frac{dT}{A + \frac{V}{K} \beta(T)}$$
 éq 2.1-4

Connaissant $T_{0,}T_{L}$, L, V, t et $\beta\left(T\right)$, l'équation [éq 2.1-4] doit donner la valeur de la constante d'intégration A .

Cependant, il est difficile (voire impossible) de déterminer analytiquement cette constante, d'où le recours à une résolution numérique de l'équation [éq 2.1-4] pour déterminer A.

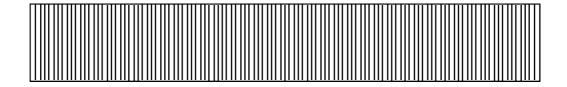
Avec les données du problème $(T_{0}, T_{L}, T_{1}, T_{2}, C_{S} = C_{I}, C_{SI}...)$, nous avons obtenu la solution (physique) de A qui prend la valeur A = -294.9117.

A partir de cette constante, la solution analytique du problème [éq 2.1-1] est analytique.

Responsable: HAELEWYN Jessica

Date : 12/12/2011 Page : 5/6 Clé : V4.04.106 Révision

ae13aef25c99


2.2 Résultats de référence

Abscisse	Température
0.6	387.98514
0.7	451.51001
0.725	469.72232
0.750	488.97505
0.775	509.32766
0.80	530.84296
0.825	553.58738
0.85	577.63114
0.9	683.71269
0.9125	719.51615
0.925	756.32221
0.9375	794.16795
0.95	833.07971
0.9625	873.08751
0.9750	914.22222
0.9875	956.51557

3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation 2D

3.2 Caractéristiques du maillage

80 QUAD8

3.3 Valeurs testées

ldentification Température	Référence
N80 (X=0.9875)	956.515
N79(X=0.9750)	914.222
N78 (X = 0.9625)	873.087
N77(X=0.9500)	833.079
N76 (X = 0.9375)	794.167
N75 (X = 0.9250)	756.322
N74 (X = 0.9125)	719.516
N73(X=0.9000)	683.712
N69 (X = 0.8500)	577.631

Responsable : HAELEWYN Jessica

Date : 12/12/2011 Page : 6/6 Clé : V4.04.106 Révision

ae13aef25c99

N67(X=0.8250)	553.587
N65 (X = 0.8000)	530.842
N63(X=0.7750)	509.327
N61(X=0.7500)	488.975
N59(X=0.7250)	469.722
N57(X=0.7000)	451.510
N44 (X = 0.6000)	387.985

4 Synthèse des résultats

Les résultats sont très satisfaisants avec des écarts à la solution de référence inférieurs à 1%.