Date: 21/07/2017 Page: 1/11

Titre : SSLV314 - Propagation plane d'une fissure déboucha[...]

Responsable : GÉNIAUT Samuel Clé : V3.04.314 Révision 60d2ea3b16e3

SSLV314 - Propagation plane d'une fissure débouchante avec X-FEM

Résumé:

Le but de ce test est de comparer les méthodes de propagation simplexe, maillage, upwind, géométrique de l'opérateur PROPA FISS pour une fissure 3D sollicitée en mode I pur.

Responsable : GÉNIAUT Samuel

Date : 21/07/2017 Page : 2/11 Clé : V3.04.314 Révision

60d2ea3b16e3

1 Problème de référence

1.1 Géométrie

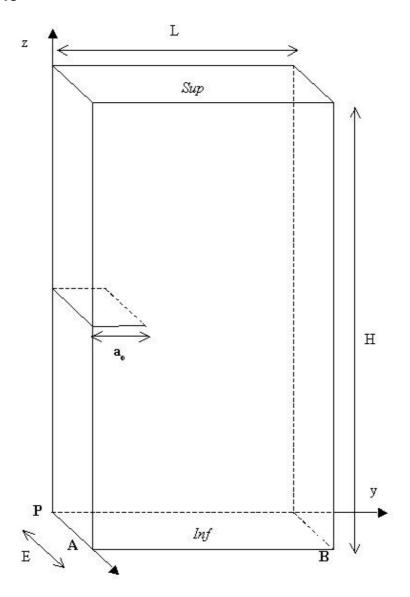


Figure 1.1-a: géométrie de la plaque fissurée

Dimensions géométriques de la plaque fissurée:

La fissure est horizontale, le front étant initialement positionné en (x, 2, 9).

1.2 Propriétés du matériau

Module de Young E = 205000 MPa

Responsable : GÉNIAUT Samuel

Date : 21/07/2017 Page : 3/11 Clé : V3.04.314 Révision

60d2ea3b16e3

Coefficient de Poisson v = 0.3

1.3 Conditions aux limites et chargements

Conditions aux limites:

• Point $P: \Delta X = \Delta Y = \Delta Z = 0$

• Points sur le segment $AB: \Delta X = \Delta Z = 0$

• Points sur la surface INF : $\Delta Z = 0$

Chargement:

• Pression sur la surface SUP : P = -1 MPa

Date: 21/07/2017 Page: 4/11 Responsable: GÉNIAUT Samuel Clé: V3.04.314 Révision

60d2ea3b16e3

Solution de référence 2

2.1 Méthode de calcul

Non régression.

2.2 Grandeurs et résultats de référence

Les résultats de la modélisation B (méthode Maillage) sont pris comme référence. Pour les modélisation B et C, on vérifie la non régression du code par rapport à la position du fond de fissure.

Pour les modélisations A, D, E et F, on vérifie que les nœuds les plus proches de la trace du fond de fissure sur le plan (1, y, z) au dernier instant de propagation ont leurs level-sets très proches de zéro.

Instant de propagation	Nœud	Coordonnée y_i	Coordonnée z_i
	N926	2.33	8.80
3	N1028	2.33	9.00
	N1130	2.33	9.20

Ces nœuds sont ceux inclus dans un rayon de capture valant la plus grande arête d'un élément, centré sur la trace du fond de fissure sur le plan (1, y, z).

On identifie ces nœuds dans le .mess de la modélisation B et l'on estime la valeur de leurs level-sets dans les modélisations A, D ,E et F.

Titre : SSLV314 - Propagation plane d'une fissure déboucha[...]
Responsable : GÉNIAUT Samuel

Date : 21/07/2017 Page : 5/11 Clé : V3.04.314 Révision

60d2ea3b16e3

3 Modélisation A

3.1 Caractéristiques de la modélisation

La méthode simplexe est utilisée par PROPA FISS.

3.2 Caractéristiques du maillage

La structure est modélisée par un maillage composé de 2040 éléments HEXA8 (voir Figure 3.2-a).

Figure 3.2-a: maillage de la structure

Le maillage est très grossier pour réduire le temps de calcul. Des éléments un peu plus petits sont utilisés dans la zone de propagation de la fissure. La dimension des éléments est $0.17 \times 0.33 \times 0.2 \, m$ dans cette zone. L'élément le plus grand utilisé a une dimension égale à $0.17 \times 0.8 \times 1.6 \, m$.

3.3 Grandeurs testées et résultats

On extrait la level set normale (LSN) et tangente (LST) en utilisant l'opérateur POST_RELEVE_T et on vérifie que les valeurs maximale et minimale restent comprises dans le rayon de capture des nœuds testés autour du front de fissure, soit 1/3 :

Propag. i	$Max LSN_i$	$Min LSN_i$	$Max LST_i$	$Min LST_i$
3	0.2	0.2	0.267	0.267

Les résultats obtenus montrent bien que les level-sets restent inférieures au rayon dans lequel le front de fissure a été localisé. Cela signifie que le fond de fissure a été correctement localisé par la méthode simplexe.

Date: 21/07/2017 Page: 6/11 Responsable: GÉNIAUT Samuel Clé: V3.04.314 Révision

60d2ea3b16e3

Modélisation B 4

4.1 Caractéristiques de la modélisation

La méthode MAILLAGE est utilisée par PROPA FISS. L'option CALC K G est utilisée par CALC G pour estimer les facteurs d'intensité de contraintes.

4.2 Caractéristiques du maillage

On utilise le même maillage que pour la modélisation A.

4.3 Grandeurs testées et résultats

On teste, en non régression avec une tolérance de 0.1%, la position du fond de fissure à la dernière itération de propagation en relevant les extrema des ordonnées des points qui le composent.

Instant de propagation	$Max Coord y_i$	$Min Coord y_i$
3	2.6	2.57

Date: 21/07/2017 Page: 7/11 Responsable : GÉNIAUT Samuel Clé: V3.04.314 Révision

60d2ea3b16e3

Modélisation C 5

5.1 Caractéristiques de la modélisation

La méthode MAILLAGE est utilisée par PROPA FISS. L'opérateur POST K1 K2 K3 est utilisé pour estimer les facteurs d'intensité de contraintes.

5.2 Caractéristiques du maillage

On utilise le même maillage que pour la modélisation A.

5.3 Grandeurs testées et résultats

On teste, en non régression avec une tolérance de 0.1%, la position du fond de fissure à la dernière itération de propagation en relevant les extrema des ordonnées des points qui le composent.

Instant de propagation	$Max Coord y_i$	$Min Coord y_i$
3	2.6	2.592

Date: 21/07/2017 Page: 8/11 Responsable: GÉNIAUT Samuel Clé: V3.04.314 Révision

60d2ea3b16e3

Modélisation D 6

6.1 Caractéristiques de la modélisation

La méthode upwind sans grille auxiliaire est utilisée par propa fiss.

6.2 Caractéristiques du maillage

On utilise le même maillage que celui de la modélisation A.

6.3 Grandeurs testées et résultats

On extrait la level-set normale (LSN) et tangente (LST) en utilisant l'opérateur POST RELEVE T et on vérifie que les valeurs maximale et minimale restent comprises dans le rayon de capture des nœuds testés autour du front de fissure, soit 1/3 :

Propag.i	$Max LSN_i$	$Min LSN_i$	$Max LST_i$	$Min LST_i$
3	0.2	-0.2	-0.267	-0.267

Les résultats obtenus montrent bien que les level-sets restent inférieures au rayon dans lequel le front de fissure a été localisé. Cela signifie que le fond de fissure a été correctement localisé par la méthode upwind.

Date: 21/07/2017 Page: 9/11 Responsable : GÉNIAUT Samuel Clé: V3.04.314 Révision

60d2ea3b16e3

Modélisation E 7

7.1 Caractéristiques de la modélisation

La méthode GEOMETRIQUE est utilisée par PROPA FISS.

7.2 Caractéristiques du maillage

On utilise le même maillage que celui de la modélisation A.

7.3 Grandeurs testées et résultats

On extrait la level-set normale (LSN) et tangente (LST) en utilisant l'opérateur POST RELEVE T et on vérifie que les valeurs maximale et minimale restent comprises dans le rayon de capture des nœuds testés autour du front de fissure, soit 1/3 :

Propag. i	$Max LSN_i$	$Min\ LSN_i$	$Max LST_i$	$Min \ LST_i$
3	0.2	0.2	0.267	0.267

Les résultats obtenus montrent bien que les level-sets restent inférieures au rayon dans lequel le front de fissure a été localisé. Cela signifie que le fond de fissure a été correctement localisé par la méthode géométrique.

Date: 21/07/2017 Page: 10/11 Responsable: GÉNIAUT Samuel Clé: V3.04.314 Révision

60d2ea3b16e3

Modélisation F 8

8.1 Caractéristiques de la modélisation

La méthode SIMPLEXE est utilisée par PROPA FISS.

8.2 Caractéristiques du maillage

On utilise le même maillage que celui de la modélisation A.

On fait un raffinement Homard sur le maillage initial pour obtenir des mailles pyramidales.

Cela permet de tester la méthode sur différentes mailles et observer que le résultat reste correct.

8.3 Grandeurs testées et résultats

On extrait la level-set normale (LSN) et tangente (LST) en utilisant l'opérateur POST RELEVE T et on vérifie que les valeurs maximale et minimale restent comprises dans le rayon de capture des nœuds testés autour du front de fissure, soit 1/3 :

Propag. i	$Max LSN_i$	$Min\ LSN_i$	$Max LST_i$	Min LST _i
3	0.2	0.2	0.267	0.267

Les résultats obtenus montrent bien que les level-sets restent inférieures au rayon dans lequel le front de fissure a été localisé. Cela signifie que le fond de fissure a été correctement localisé par la méthode géométrique.

Responsable : GÉNIAUT Samuel

Date : 21/07/2017 Page : 11/11 Clé : V3.04.314 Révision

Révision 60d2ea3b16e3

9 Synthèse des résultats

Toutes les méthodes de propagation utilisées (simplexe, maillage, upwind et géométrique) de l'opérateur PROPA_FISS ont permis de bien calculer la position d'une fissure propageant en mode I pur dans une structure $3\mathrm{D}$.