Titre: SSLS07 - Cylindre mince sous charge axiale uniform[...] Responsable: KUDAWOO Ayaovi-Dzifa

Date: 14/12/2011 Page: 1/7 Clé: V3.03.007 Révision

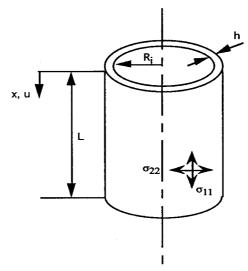
eaa9586e1edb

SSLS07 - Cylindre mince sous charge axiale uniforme

Résumé:

Ce test issu du guide VPCS (SSLS 07/89) a pour but de valider un chargement linéique (FORCE POUTRE) en modélisation axisymétrique.

On utilisera pour cela les 2 commandes: AFFE CHAR MECA (modélisation A) et AFFE CHAR MECA F (modélisation B).


Responsable : KUDAWOO Ayaovi-Dzifa Clé : V3.0

Date : 14/12/2011 Page : 2/7 Clé : V3.03.007 Révision

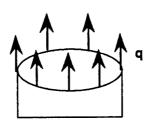
eaa9586e1edb

1 Problème de référence

1.1 Géométrie

Rayon moyen : $R_o = 1 \, \mathrm{m}$ Épaisseur : $h = 0.02 \, m$ Hauteur : $L = 4 \, m$ Rayon interne : $R_i = R_o - h/2$

1.2 Propriétés de matériaux


Module de Young : $E=2.1\times10^{11} Pa$

Coefficient de Poisson : v=0.3

1.3 Conditions aux limites et chargements

• Déplacement axial nul à l'extrémité basse (u=0) + conditions de symétrie

• Charge axiale uniforme par unité de longueur $q = 10000 \, N/m$, appliquée à l'extrémité haute

1.4 Conditions initiales

Sans objet pour l'analyse statique.

Responsable : KUDAWOO Ayaovi-Dzifa

Date : 14/12/2011 Page : 3/7 Clé : V3.03.007 Révision

eaa9586e1edb

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Contrainte axiale : $\sigma_{11} = \frac{q}{h}$

Contrainte circonférentielle : $\sigma_{22} = 0$

Allongement du cylindre : $U_x = \frac{qL}{Eh}$

 $\ \, \text{D\'eplacement radial}: \ \, \boldsymbol{U_r} \! = \! -\frac{q \, \nu \, R_0}{Eh}$

2.2 Résultats de référence

$$\sigma_{11} = 5 \times 10^5 Pa$$
 $U_x = 9.52 \times 10^{-6} m$
 $U_r = -7.14 \times 10^{-7} m$

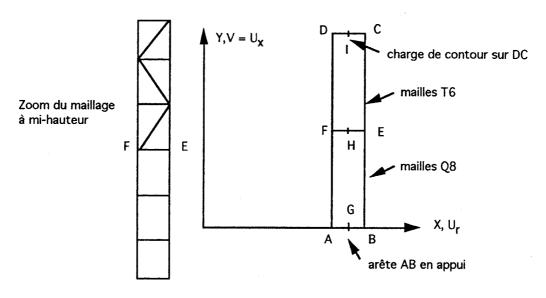
2.3 Incertitude sur la solution

Solution analytique.

2.4 Référence bibliographique

- 1) Guide VPCS Edition 1990 (SSLS 07/89)
- 2) R.J. ROARK et W.C. YOUNG: Formulas for stress and strain, 5^{ème} édition, New York, Mc Graw-Hill, 1975

Responsable: KUDAWOO Ayaovi-Dzifa


Date : 14/12/2011 Page : 4/7 Clé : V3.03.007 Révision

eaa9586e1edb

3 Modélisation A

3.1 Caractéristiques de la modélisation

AXIS, mailles T6 et Q8

Position des points :

• E, F à mi-hauteur

• G, H, I à distance R_o de l'axe

Découpage : 100 éléments suivant la hauteur

1 élément dans l'épaisseur

Conditions limites : DY = 0

sur AB

Chargement: Force répartie = 500 000

sur CD

Nom des nœuds :

Point A = NI Point C = N452 Point E = N201 Point G = N51 Point I = N503

Point B = N101 Point D = N504 Point F = N203 Point H = N202

3.2 Caractéristiques du maillage

Nombre de nœuds : 553

Nombre de mailles et types : 50 QUAD8, 100 TRIA6, 204 SEG3

3.3 Valeurs testées

Localisation	Type de valeur	Référence
Points G , H , I	$u_r(m)$	−7.14 10 ^{−7}
Points C, D, I	$u_x(m)$	9.52 10 ⁻⁶

Titre : SSLS07 - Cylindre mince sous charge axiale uniform[...]

Responsable : KUDAWOO Ayaovi-Dzifa

Date : 14/12/2011 Page : 5/7

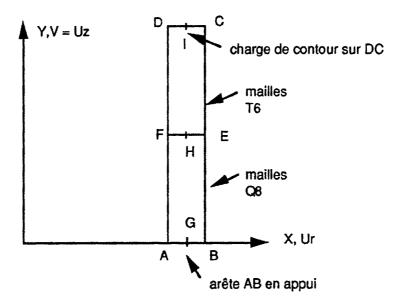
Clé : V3.03.007 Révision
eaa9586e1edb

Points A , B , C , D , E , F , G	$\sigma_{22}(Pa)$	0.
Points A, B, C, D, E, F, G	$\sigma_{11}(Pa)$	5. 10 ⁻⁵

3.4 Remarque

La valeur Fy fournie correspond à la pression p=q/h.

Responsable : KUDAWOO Ayaovi-Dzifa


Date : 14/12/2011 Page : 6/7 Clé : V3.03.007 Révision

eaa9586e1edb

4 Modélisation B

4.1 Caractéristiques de la modélisation

AXIS, mailles T6 et Q8

Position des points :

• E, F à mi-hauteur

• G, H, I à distance R_o de l'axe

Découpage : 100 éléments suivant la hauteur

1 élément dans l'épaisseur

La charge est décomposée de la façon suivante :

- charge qI variant linéairement de 0 en D à $10000\,N/m$ en C : champ de déplacements U1
- charge q2 variant linéairement de $10000\,N/m$ en D à 0 en C : champ de déplacements IJ2

Les résultats sont donnés séparément pour chacun des champs U1 et U2.

Nom des nœuds :

Point A = NI Point C = N452 Point E = N201 Point G = N51 Point I = N503

Point B = N101 Point D = N504 Point F = N203 Point H = N202

4.2 Caractéristiques du maillage

Nombre de nœuds : 557

Nombre de mailles et types : 50 QUAD8, 100 TRIA6, 204 SEG3

4.3 Valeurs testées

Champs	Localisation	Type de valeur	Référence
U1	Point $G(N51)$	$u_r(m)$	− 3,583. 10 ^{−7}
	Point $H(N202)$	·	− 3,583. 10 [−] 7

Titre : SSLS07 - Cylindre mince sous charge axiale uniform[...]

Date : 14/12/2011 Page : 7/7

Responsable : KUDAWOO Ayaovi-Dzifa

Clé : V3.03.007 Révision

eaa9586e1edb

·	Point $I(N503)$		−1,012. 10 ^{−6}
	Point $C(N452)$	$u_x(m)$	4,896. 10 ⁻⁶
	Point $D(N504)$		4,658. 10 ⁻⁶
	Point $I(N503)$		4,777. 10 ⁻⁶
U2	Point G	$u_r(m)$	− 3,559. 10 ^{−7}
	Point H		− 3,559. 10 ^{−7}
	Point I		2,973. 10 ⁻⁷
	Point $C(N452)$		4,627. 10 ⁻⁶
	Point $D(N504)$		4,865. 10 ⁻⁶
	Point $I(N503)$		4,746. 10 ⁻⁶

5 Synthèse des résultats

Le mot-clé FORCE_CONTOUR utilisé à partir des deux commandes AFFE_CHAR_MECA et AFFE_CHAR_MECA_F fournit des résultats justes.