Responsable : ALARCON Albert

Date : 30/07/2015 Page : 1/8 Clé : V2.04.100 Révision

59ce238bde25

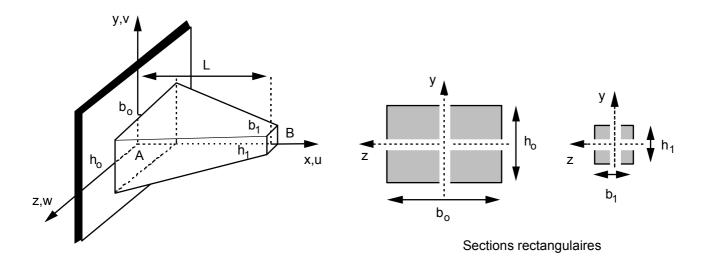
SDLV100 - Vibration d'une poutre élancée de section rectangulaire variable (encastrée-libre)

Résumé:

La structure étudiée est une poutre en acier encastrée libre à section variable rectangulaire modélisée par des éléments volumiques. On s'intéresse à ses fréquences propres en flexion. Le même problème est traité en modélisation poutre dans le cas test SDLL09.

Ce problème permet de tester les éléments volumiques MECA_HEXA20 et MECA_PENTA15 en analyse modale. Il permet également de tester l'option MASS_MECA_DIAG de calcul des matrices de masse diagonalisées pour les modélisations volumiques.

La solution de référence est une solution numérique obtenue à l'aide du code de calcul par éléments finis SAMCEF pour des modélisations similaires. Les résultats obtenus sont également en bon accord avec les résultats semi-analytiques donnés dans le guide VPCS.


Responsable : ALARCON Albert Clé : V2.04.100

Date : 30/07/2015 Page : 2/8 Clé : V2.04.100 Révision

59ce238bde25

1 Problème de référence

1.1 Géométrie

Longueur de la poutre :

L=1 m

Section rectangulaire:

	Section droite initiale	Section droite finale
hauteur :	$h_o = 0.04 m$	$h_1 = 0.01 m$
largeur :	$b_o = 0.04 m$	$b_1 = 0.01 m$
aire :	$A_o = 1.6 10^{-3} m^2$	$A_1 = 1.10^{-4} m^2$
inertie :	$Iz_0 = 2.133310^{-7} m^4$	$Iz_1 = 8.333310^{-10} m^4$

Coordonnées des points (en mètres)

	A	B
\overline{x}	0.	1.
\overline{y}	0.	0.
\overline{z}	0.	0.

1.2 Propriétés de l'acier

$$E = 2.10^{11} Pa$$

 $\rho = 7800 \, kg \, / \, m^3$

1.3 Conditions aux limites et chargements

Point A: encastré u=v=z=0

Date: 30/07/2015 Page: 3/8 Responsable: ALARCON Albert Clé: V2.04.100 Révision

59ce238bde25

Solution de référence 2

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence est obtenue à l'aide du logiciel de calcul par éléments finis SAMCEF pour des modélisations identiques mais avec des matrices élémentaires de masse cohérentes.

On rappelle la solution analytique donnée dans la fiche SDLL09/89 du quide VPCS. L'équation différentielle en flexion de la poutre considérée, en théorie d'Euler-Bernoulli s'écrit (Théorie d'Euler-Bernoulli):

$$\frac{\partial^2 \left(E I_z \frac{\partial^2 v}{\partial x^2} \right)}{\partial x^2} = -\rho A \frac{\partial^2 v}{\partial t^2}$$

où I_z et A varient avec l'abscisse.

Les fréquences propres sont alors de la forme :

$$f_i = \frac{1}{2\pi} \lambda_i(\alpha, \beta) \frac{h_1}{L^2} \sqrt{\frac{E}{12\rho}}$$

avec
$$\alpha = \frac{h_0}{h_1} = 4$$
 et $\beta = \frac{b_0}{b_1} = 4$.

Pour cette valeur de α et β , les premières valeurs de la suite (λ_i) sont :

	λ_1	λ_2	λ_3	λ_4	λ_5
$\beta = 4$	23.289	73.9	165.23	299.7	478.1

2.2 Résultats de référence

Les résultats de référence retenus sont les 5 premières fréquences propres des modes de flexion.

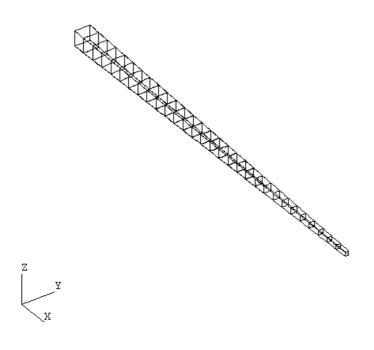
2.3 Incertitude sur la solution

Solution analytique en théorie de poutre de Bernoulli, et solution numérique SAMCEF.

2.4 Références bibliographiques

1) H.H. MABIE, C.B. ROGERS, Transverse vibrations of double-tapered cantilever beams -Journal of the Acoustical Society of America, n° 51, p. 1771-1774 (1972).

Responsable : ALARCON Albert


Date : 30/07/2015 Page : 4/8 Clé : V2.04.100 Révision

59ce238bde25

3 Modélisation A

3.1 Caractéristiques de la modélisation

Eléments de volume MECA_HEXA20

Discrétisation : poutre AB : 30 mailles HEXA20 (1 maille dans la section)

Conditions aux limites :

• en tous les nœuds DDL_IMPO: (TOUT: 'OUI' DZ: 0.)

• à l'extrémité A (groupe de noeuds G_1 (GROUP_NO : G_1 DX: 0., DY: 0) G_1

3.2 Caractéristiques du maillage

Maillage: Nombre de nœuds: 368

Nombre de mailles et type : 30 HEXA20

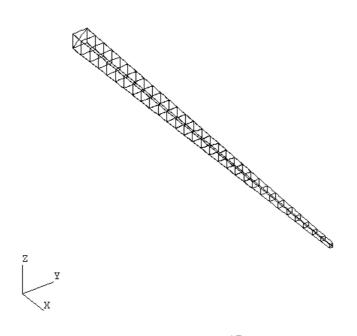
3.3 Valeurs testées

Identification	Solution poutre analytique	Référence SAMCEF	Aster	% différence Aster-SAMCEF
	fréquence	en HZ	en HZ	
matrice cohérente				
flexion 1	54.18	56.84	56.85	0.0176%
flexion 2	171.94	180.0	180.08	0.0444%
flexion 3	384.40	401.0	401.23	0.0574%

Manuel de validation

Titre : SDLV100 - Vibration d'une poutre élancée de sectio[] Responsable : ALARCON Albert				Date : 30/07/2015 Page : 5/8 Clé : V2.04.100 Révision : 59ce238bde25		
	flexion 4 flexion 5	697.24 1112.28	723.2 1145.41	724.02 1147.51	0.1134% 0.1833%	
	matrice diagonale					
	flexion 1 flexion 2 flexion 3 flexion 4 flexion 5	54.18 171.94 384.40 697.24 1112.28	56.84 180.00 401.00 723.20 1145.41	56.78 179.57 399.24 718.69 1136.01	-0.1033% -0.2419% -0.4408% -0.6273% -0.8273%	

Responsable : ALARCON Albert


Date : 30/07/2015 Page : 6/8 Clé : V2.04.100 Révision

59ce238bde25

4 Modélisation B

4.1 Caractéristiques de la modélisation

Eléments de volume MECA_PENTA15

Discrétisation:

poutre AB: 60 mailles PENTA15 (2 mailles dans la section)

Conditions aux limites :

• en tous les nœuds DDL IMPO: (TOUT: 'OUI' DZ: 0.)

• à l'extrémité A (groupe de noeuds G_1 (GROUP_NO : G_1 DX: 0., DY: 0) G_1

4.2 Caractéristiques du maillage

Maillage: Nombre de nœuds: 368

Nombre de mailles et type : 60 PENTA15

4.3 Valeurs testées

Identification	Solution poutre semi-analytique	Référence SAMCEF	Aster	% différence ASTER-SAMCEF
	fréquence	en HZ	en HZ	
matrice consistante				
flexion 1	54.18	56.84	56.82	-0.038%
flexion 2	171.94	180.00	179.96	-0.022%
flexion 3	384.40	401.00	400.93	-0.018%
flexion 4	697.24	723.20	723.41	0.029%
flexion 5	1112.28	1145.41	1146.41	0.088%

Manuel de validation

Fascicule v2.04: Dynamique linéaire des structures volumiques

Titre : SDLV100 - Vibration d'une poutre élancée de sectio[...]

Responsable : ALARCON Albert

Date : 30/07/2015 Page : 7/8

Clé : V2.04.100 Révision
59ce238bde25

matrice diagonale				
manros alagonalo				
florion 1	E4.40	EC 04	FC 7C	0.4400/
flexion 1	54.18	56.84	56.76	-0.149%
flexion 2	171.94	180.00	179.51	-0.272%
flexion 3	384.40	401.00	399.25	-0.437%
flexion 4	697.24	723.20	719.	-0.583%
flexion 5	1112.28	1145.41	1140.	-0.740%

Responsable : ALARCON Albert

Date : 30/07/2015 Page : 8/8 Clé : V2.04.100 Révision

Révision 59ce238bde25

5 Synthèse des résultats

Les écarts entre les résultats des calculs *Code_Aster* et SAMCEF avec masses cohérentes sont inférieurs à 0.2%.

Les écarts entre les résultats de calculs *Code_Aster* avec masses diagonales et SAMCEF avec masses cohérentes restent inférieurs à 1%.

Ces résultats sont conformes à ce que l'on pouvait attendre, et valident d'une manière fiable les calculs de fréquences propres dans *Code_Aster* par CALC_MODES et l'opérateur CALC_MATR_ELEM en masses cohérentes comme en masses diagonales.