Date: 13/11/2014 Page: 1/9

Titre: SDLL132 - Modes propres d'une charpente en poutres[...]

Responsable : FLÉJOU Jean-Luc Clé : V2.02.132 Révision 18125c638784

SDLL132 - Modes propres d'une charpente en poutres multifibres

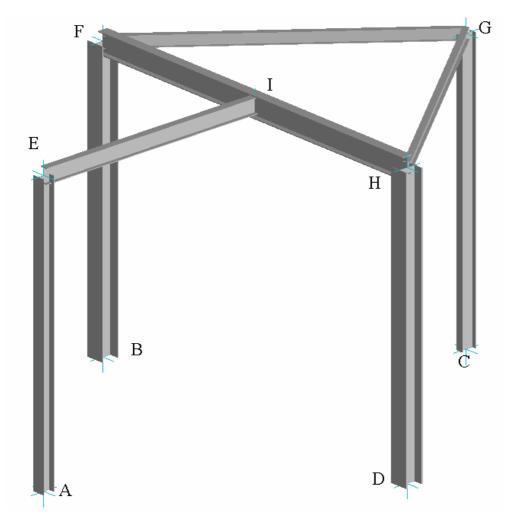
Résumé:

Ce test concerne la validation de l'option MASS_INER, ainsi que du calcul des modes propres de la charpente lorsque le modèle contient des POU_D_TGM (modélisation A) ou des POU_D_EM (modélisation B) (poutres multifibres). Les résultats de la solution de référence sont obtenus en faisant la même étude mais avec un modèle de POU D TG (modélisation C) et de POU D E (modélisation D).

Ce test permet de valider, en faisant une analyse modale de la structure :

- les éléments finis linéiques de type POU D TGM et de type POU D EM.
- les résultats des commandes : POST ELEM, NORM MODE, EXTR MODE.
- les résultats de CALC MODES.

Responsable : FLÉJOU Jean-Luc


Date : 13/11/2014 Page : 2/9 Clé : V2.02.132 Révision

Révision 18125c638784

1 Problème de référence

1.1 Géométrie

Le cas test est une charpente métallique composée de poutres et de poteaux.

Coordonnées des nœuds principaux du maillage :

Point	Coord. X (en m)	Coord. Y (en m)	Coord. Z (en m)
\overline{A}	2.0	2.5	0.0
B	4.0	0.0	0.0
C	2.0	- 2.5	0.0
D	0.0	0.0	0.0
E	2.0	2.5	3.0
F	4.0	0.0	3.0
G	2.0	– 2.5	3.0
H	0.0	0.0	3.0
\overline{I}	2.0	0.0	3.0

Responsable : FLÉJOU Jean-Luc Clé :

Date : 13/11/2014 Page : 3/9 Clé : V2.02.132 Révision

18125c638784

1.2 Caractéristiques mécaniques des poutres

Les poutres du cas test sont des profilés standards de la construction métallique. Les unités de leurs caractéristiques mécaniques sont homogènes à des mètres.

	HEA200	IPE220	<i>IPE160</i>	HEA140	<i>IPE120</i>
Poutres	BF , DH	HF	EI , CG	AE	FG, GH
\overline{A}	5.39E - 03	3.34E - 03	2.01E - 03	3.14E - 03	1.32E - 03
IY	3.69E - 05	2.77E - 05	8.70E - 06	1.03E - 05	3.18E - 06
IZ	1.34E - 05	2.05E - 06	6.83E - 07	3.89E - 06	2.77E - 07
\overline{AY}	1.474994	1.789865	1.792884	1.464032	1.774392
AZ	4.466038	2.633754	2.586199	4.464173	2.590182
\overline{JX}	1.97E – 07	8.66E - 08	3.37E - 08	7.76E – 08	1.63E – 08
\overline{JG}	1.06E - 07	2.23E - 08	3.89E - 09	1.47E - 08	8.73E - 10

Les grandeurs EY, EZ, IYR2, IZR2 sont nulles pour toutes les poutres.

1.3 Propriétés du matériau

Un seul matériau est utilisé :

Young 2.10e+11 PaRho $7.85e+03 kg/m^3$

1.4 Conditions aux limites

Les points A, B, C, D sont encastrés.

DX=0 DY=0 DZ=0 DRX=0 DRY=0 DRZ=0

Date: 13/11/2014 Page: 4/9 Responsable : FLÉJOU Jean-Luc Clé: V2.02.132 Révision

18125c638784

Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Les valeurs de la solution de référence sont obtenues avec la charpente, réalisée soit avec un modèle à base de POU D TG soit avec un modèle à base de POU D E.

2.2 Résultats de référence

Les valeurs obtenues par la commande POST ELEM, avec le mot clé MASS INER (même valeur pour toutes les modélisations) :

Grandeurs	Valeur
MASSE	5.85759E+02
CDG_X	2.00000E+00
CDG_Z	2.03968E+00
IX_PRIN_G	1.56562E+03
IY_PRIN_G	1.81822E+03
IZ PRIN G	2.23486E+03

Les valeurs de références sur les modes sont données dans le paragraphe « Grandeurs et résultats testés » pour chaque modélisation. On précise que les modes sont filtrés par la commande EXTR MODE avec le critère MASS EFFE UN et un seuil de 5.0E-04.

2.3 Incertitude sur la solution

Sans objet.

Date: 13/11/2014 Page: 5/9 Responsable : FLÉJOU Jean-Luc Clé: V2.02.132 Révision

18125c638784

Modélisation A

3.1 Caractéristiques de la modélisation et du maillage

Le modèle est composé de POU D TGM (poutres multifibres). Toutes les sections, sont en forme de "I" et sont décrites avec 30 fibres : 1 dans l'épaisseur de l'âme et des semelles, 10 dans la largeur des semelles et 10 dans la hauteur de l'âme.

3.2 Grandeurs testées et résultats

Comme déjà préciser en introduction, tous les résultats de référence sont de type AUTRE ASTER obtenus avec la modélisation POU D TG.

Le tableau ci-dessous résume les résultats obtenus par la commandes POST ELEM, avec le mot clé MASS INER.

Grandeurs	Valeurs	Précision
	Références	
MASSE	5.8576E+02	1 E – 0 6
CDG_X	2.0000E+00	1E-06
CDG_Z	2.0397E+00	1 E – 0 6
IX_PRIN_G	1.5656E+03	1 E – 0 6
IY_PRIN_G	1.8182E+03	1 E – 0 6
IZ PRIN G	2.2349E+03	1 E – 0 6

Mode	PARA	Valeur de référence	Précision
1	FREQ	9.97491403256	1 E – 0 6
2	FREQ	12.2159676506	1E-06
3	FREQ	12.868960956	1 E – 0 6
4	FREQ	17.2857355599	1 E – 0 6
5	FREQ	18.957859521	1 E – 0 6
6	FREQ	22.0433498853	1 E – 0 6
7	FREQ	26.6404640559	1 E – 0 6
8	FREQ	34.7409020802	1 E – 0 6
9	FREQ	37.4004630214	1 E – 0 6
1	MASS_EFFE_UN_DX	0.244809518115	1 E – 0 6
2	MASS_EFFE_UN_DX	0.430134528182	1 E – 0 6
3	MASS_EFFE_UN_DY	0.532946971892	1 E – 0 6
3	MASS_EFFE_UN_DZ	0.000404337801659	1 E – 0 6
4	MASS_EFFE_UN_DX	0.00129425453011	1 E – 0 6
5	MASS_EFFE_UN_DX	0.0775826535135	1 E – 0 6
6	MASS_EFFE_UN_DY	0.139471255187	1 E – 0 6
7	MASS_EFFE_UN_DY	0.058326978735	1 E – 0 6
8	MASS_EFFE_UN_DX	0.00226815006929	1 E – 0 6
9	MASS_EFFE_UN_DX	0.0172850618745	1 E – 0 6

Responsable : FLÉJOU Jean-Luc

Date: 13/11/2014 Page: 6/9 Clé: V2.02.132

Révision

18125c638784

Modélisation B 4

4.1 Caractéristiques de la modélisation et du maillage

Même caractéristiques que la modélisation A, seul le type d'élément de poutre change. Dans ce cas il s'agit d'éléments POU D EM.

4.2 Grandeurs testées et résultats

Comme déjà précisé en introduction, tous les résultats de référence sont de type AUTRE ASTER obtenus avec la modélisation POU D E.

Le tableau ci-dessous résume les résultats obtenus par la commandes POST ELEM, avec le mot clé MASS INER.

Grandeurs	Valeurs	Précision
	Références	
MASSE	5.8576E+02	1E - 06
CDG_X	2.0000E+00	1E-06
CDG_Z	2.0397E+00	1E - 06
IX_PRIN_G	1.5656E+03	1E - 06
IY_PRIN_G	1.8182E+03	1E - 06
IZ PRIN G	2.2349E+03	1E - 06

Mode	PARA	Valeur de référence	Précision
1	FREQ	9.98316178503	1 E – 0 6
2	FREQ	12.3054090119	1E-06
3	FREQ	13.0421930932	1 E – 0 6
4	FREQ	19.0267560923	1 E – 0 6
5	FREQ	22.2977469834	1 E – 0 6
6	FREQ	26.7653558109	1 E – 0 6
7	FREQ	33.6499455758	1 E – 0 6
8	FREQ	34.476790496	1 E – 0 6
9	FREQ	35.1296888165	1 E – 0 6
10	FREQ	36.8646125525	1 E – 0 6
1	MASS_EFFE_UN_DX	0.240393876317	1 E – 0 6
2	MASS_EFFE_UN_DX	0.433081172981	1 E – 0 6
3	MASS_EFFE_UN_DY	0.527057012444	1 E – 0 6
3	MASS_EFFE_UN_DZ	4.1536989003E-4	1 E – 0 6
4	MASS_EFFE_UN_DX	0.0799412335197	1 E – 0 6
5	MASS_EFFE_UN_DY	0.136506718973	1 E – 0 6
6	MASS_EFFE_UN_DY	0.0630112344329	1 E – 0 6
7	MASS_EFFE_UN_DY	6.12175711067E-4	1 E – 0 6
8	MASS_EFFE_UN_DX	1.47389085571E-3	1 E – 0 6
9	MASS_EFFE_UN_DX	0.0126681569373	1 E – 0 6

Responsable : FLÉJOU Jean-Luc

Date : 13/11/2014 Page : 7/9 Clé : V2.02.132 Révision

18125c638784

5 Modélisation C

5.1 Caractéristiques de la modélisation et du maillage

Même caractéristiques que la modélisation A, seul le type d'élément de poutre change. Dans ce cas il s'agit d'éléments POU D TG.

5.2 Grandeurs testées et résultats

Cette modélisation sert de référence à la modélisation A . Les résultats exploités sont les fréquences (FREQ) ainsi que les masses effectives (MASS EFFE UN).

Tests de non régression uniquement.

Responsable : FLÉJOU Jean-Luc

Date : 13/11/2014 Page : 8/9 Clé : V2.02.132 Révision

18125c638784

6 Modélisation D

6.1 Caractéristiques de la modélisation et du maillage

Même caractéristiques que la modélisation A, seul le type d'élément de poutre change. Dans ce cas il s'agit d'éléments POU_D_E .

6.2 Grandeurs testées et résultats

Cette modélisation sert de référence à la modélisation B . Les résultats exploités sont les fréquences (<code>FREQ</code>) ainsi que les masses effectives (<code>MASS</code> <code>EFFE</code> <code>UN</code>).

Tests de non régression uniquement.

Responsable : FLÉJOU Jean-Luc

Date: 13/11/2014 Page: 9/9 Clé: V2.02.132

Révision

18125c638784

Synthèse des résultats

On constate que pour les deux modélisations traitées (POU_D_TGM et POU_D_EM), les résultats sont très proches des valeurs de référence.