Responsable : ZENTNER Irmela

Date : 03/08/2011 Page : 1/7 Clé : V2.02.107 Révision

054678e2a3c0

SDLL107 - Calcul transitoire d'une poutre sous excitation aléatoire

Résumé:

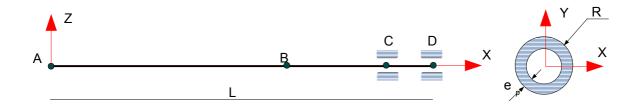
L'objectif de ce cas-test est de calculer la réponse temporelle d'une poutre sous excitation aléatoire de densité spectrale de puissance (DSP) et dont les déplacements sont limités en plusieurs points par des obstacles :

- · La poutre est soumise a des sollicitations aléatoires,
- L'obstacle est caractérisé par une rigidité normale de choc et un coefficient de frottement.

On détermine, au niveau des obstacles, plusieurs grandeurs caractérisant le comportement :

- Déplacement moyen,
- Valeur RMS de la force normale,
- Valeur moyenne de la force tangente,
- Puissance d'usure

Ce test est réalisé sur une poutre composée d'éléments SEG2 et de section circulaire.


Responsable : ZENTNER Irmela Clé : V2.02.107

Date: 03/08/2011 Page: 2/7 Clé: V2.02.107 Révision

054678e2a3c0

1 Problème de référence

1.1 Géométrie

Géométrie de la poutre (m):

$$L=1.5$$

 $R=0.005$
 $e_p=0.0005$

Coordonnées des points (m):

1.2 Propriétés élastiques du matériau

• E = 2.0E11 Pa Module d'Young

• v = 0.3 Coefficient de poisson

 $\rho = 7900.0 \, kg \cdot m^{-3}$ Masse Volumique

1.3 Conditions aux limites et chargements

Déplacement imposé:

• Tous les nœuds : DRX = DRY = DX = DZ = 0.0

• Point A: DY = DRZ = 0.0

· Chargement imposé :

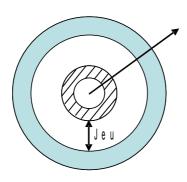
Point B: force aléatoire selon Y

• Point B : moment aléatoire autour de Z

Responsable : ZENTNER Irmela

Date : 03/08/2011 Page : 3/7 Clé : V2.02.107 Révision

054678e2a3c0


Obstacle (CERCLE) au point D:

• Jeu = 0 m

• norme = (1.,0.,0.)

• origine = (1.,0.,0.)

• Rigidité normale : $RIGI_NOR=10^6\,N/m$ • Frottement COULOMB : COULOMB=0.3

• Obstacle (DISCRET) au point C:

• norme = (1.,0.,0.)

• origine = (1.,0.,0.)

• Rigidité normale : *RIGI NOR*=100. *N/m*

• Frottement COULOMB : COULOMB = 0.3

- Jeu1 = 1.0 m
- Jeu2 = 1.5 m

Date: 03/08/2011 Page: 4/7 Responsable: ZENTNER Irmela Clé: V2.02.107 Révision

054678e2a3c0

Solution de référence 2

2.1 Calcul de référence

On utilise un référence NON REGRESSION pour tester les différentes quantités calculées au niveau des obstacles.

La procédure de calcul est la suivante, on :

- Calcule la base modale,
- Crée de la matrice interspectrale (ou DSP) à partir de fonctions complexes,
- Génère les efforts aléatoires,
- Calcule de la réponse dynamique transitoire,
- Test des valeurs de la réponse (déplacements et efforts) au niveau des obstacles.

2.2 Grandeur de référence

Composantes de la matrice interspectrale obtenue à partir des fonctions complexes.

Grandeur	Composante	Commentaires			
DEPL_X	MOYEN	Valeur moyenne du déplacement suivant X , au point de choc, dans leur repère local,			
DEPL_Y	ECART_TYPE	Valeur de l'écart-type du déplacement suivant $\ Y$, au point de choc, dans leur repère local,			
DEPL_RADIAL	RMS	Valeur RMS sur le temps de choc du «déplacement radial» au point de choc.			
DEPL_ANGULAIRE	MAXI	Valeur maximum du «déplacement angulaire» au point de choc.			
FORCE_NORMALE	RMS_T_TOTAL	Valeur ${\tt RMS}$ sur le temps total de la force normale au point de choc .			
FORCE_TANG_1	MOYEN	Valeur moyenne de la force tangente dans le plan de l'obstacle.			
FORCE_TANG_2	ECART_TYPE	Valeur de l'écart-type de la force tangente orthogonale au plan de l'obstacle.			
STAT_CHOC	T_CHOC_MOYEN	Temps de choc moyen			
STAT_USURE	PUIS_USURE	Puissance d'usure calculée selon ARCHARD .			

Responsable: ZENTNER Irmela

Date: 03/08/2011 Page: 5/7 Clé: V2.02.107 Révision

Révision

054678e2a3c0

2.3 Résultat de référence

	Composante	Référence
Matrice internegatively	(1,1)	0.1000 + 0.j
Matrice interspectrale	(2,2)	0.025 + 0.j

Remarque

le comportement du générateur de nombres aléatoires (module RANDOM) a changé depuis la version 2.3 de python. Les résultats s'en trouvent un peu affectés. Pour les tests sur la réponse dynamique transitoire, on teste donc avec des grandeurs et résultats de référence différents suivant les versions de python.

Version python inférieur à 2.3				
Grandeur	Composante	Point	Référence	
DEPL_X	MOYEN	D	0.5 m	
DEPL_Y	ECART_TYPE	D	$2.57 \times 10^{-5} m$	
DEPL_RADIAL	RMS	D	$2.573 \times 10^{-5} m$	
FORCE_NORMALE	RMS_T_TOTAL	D	25.73 N	

Version python supérieur à 2.3				
Grandeur	Composante	Point	Référence	
DEPL_X	MOYEN	D	0.5 m	
DEPL_Y	ECART_TYPE	D	$2.456 \times 10^{-5} m$	
DEPL_RADIAL	RMS	D	$2.456 \times 10^{-5} m$	
FORCE_NORMALE	RMS_T_TOTAL	D	24.56 N	
DEPL_ANGULAIRE	MAXI	C	180. <i>rad</i>	
FORCE_TANG_1	MOYEN	D	0.	
FORCE_TANG_2	ECART_TYPE	D	0.	
STAT_CHOC	T_CHOC_MOYEN	C	0.	
STAT_USURE	PUIS_USURE	С	0.	

Date: 03/08/2011 Page: 6/7 Responsable: ZENTNER Irmela Clé: V2.02.107

Révision 054678e2a3c0

Modélisation A 3

Caractéristiques de la modélisation A 3.1

Modélisation POU_D_T :

Nombre de nœuds 76

Nombre de mailles 75 Soit:

> SEG2 75

Groupe de mailles :

LISI : ensemble des mailles <code>SEG2</code> de la poutre

3.2 Grandeurs testées et résultats

	Composante	Référence	Tolérance (%)
Matrice interspectrale	(1,1)	0.100 + 0.j	10
Matrice interspectrale	(2,2)	0.025 + 0.j	10

Version python inférieur à 2.3 3.2.1

Grandeur	Composante	Point	Référence	Tolérance (%)
DEPL_Y	ECART_TYPE	D	$2.57 \times 10^{-5} m$	0.1
DEPL_RADIAL	RMS	D	$2.573 \times 10^{-5} m$	0.1
FORCE_NORMALE	RMS_T_TOTAL	D	25.73 N	0.1

3.2.2 Version python supérieure à 2.3

Grandeur	Composante	Point	Référence	Tolérance $(\%)$
DEPL_Y	ECART_TYPE	D	$2.456 \times 10^{-5} m$	0.1
DEPL_RADIAL	RMS	D	$2.456 \times 10^{-5} m$	0.1
FORCE_NORMALE	RMS_T_TOTAL	D	24.56 N	0.1
DEPL_ANGULAIRE	MAXI	C	180. <i>rad</i>	0.1
FORCE_TANG_1	MOYEN	D	0.	0.1
FORCE_TANG_2	ECART_TYPE	D	0.	0.1
STAT_CHOC	T_CHOC_MOYEN	C	0.	0.1
STAT_USURE	PUIS_USURE	C	0.	0.1

Responsable: ZENTNER Irmela

Date : 03/08/2011 Page : 7/7 Clé : V2.02.107 Révision

Révision 054678e2a3c0

4 Synthèse des résultats

Les résultats obtenus sont satisfaisants, ils permettent de valident le cas test.