Titre: Modélisation 3D_FLUI_ABSO Responsable: DEVESA Georges Date : 26/09/2013 Page : 1/3 Clé : U3.14.10 Révision

683249190f5d

Modélisation 3D FLUI ABSO

Résumé:

Ce document décrit pour la modélisation ${\tt 3D_FLUI_ABSO}$:

- les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- · les mailles supports afférentes,
- · les chargements supportés,
- les possibilités non linéaires,
- les cas-tests mettant en œuvre la modélisation.

La modélisation 3D_FLUI_ABSO (Phénomène : MÉCANIQUE) correspond à des éléments finis dont les mailles supports sont surfaciques. Ils permettent de prendre en compte la condition de frontière absorbante de volumes fluides.

Titre : Modélisation 3D_FLUI_ABSO Responsable : DEVESA Georges Date : 26/09/2013 Page : 2/3 Clé : U3.14.10 Révision

683249190f5d

1 Discrétisation

1.1 Degrés de liberté

ModélisationDegrés de liberté (à chaque nœud sommet)3D_FLUI_ABSOPRES : pression

PHI: potentiel de déplacement fluide

1.2 Maille support des matrices de rigidité

Les mailles supports des éléments finis peuvent être des quadrangles ou des triangles. Les éléments sont iso-paramétriques.

Modélisation	Maille	Interpolation	Remarques
3D_FLUI_ABSO	TRIA3	linéaire	
	TRIA6	quadratique	
	QUAD4	linéaire	
	QUAD8	quadratiques	
	OUAD9		

1.3 Maille support des chargements

Les mêmes que précédemment.

2 Chargements supportés

AFFE_CHAR_MECA	3D_FLUI_ABSO	Remarques
DDL_IMPO	FDLV111A	

Titre : Modélisation 3D_FLUI_ABSO Responsable : DEVESA Georges Date : 26/09/2013 Page : 3/3 Clé : U3.14.10 Révision

683249190f5d

3 Possibilités non-linéaires

3.1 Lois de comportements

La seule relation de comportement disponible pour cette modélisation est la RELATION 'ELAS' (sous COMPORTEMENT) dans DYNA NON LINE (Cf. [U4.51.11]).

3.2 Déformations

Seules les déformations linéarisées mot-clé 'PETIT' sous DEFORMATION sont disponibles dans les relations de comportement (Cf. [U4.51.11]).

4 Exemples de mise en œuvre : cas-tests

FDLV111A [V8.01.111]: Absorption d'une onde de pression dans une colonne fluide