Titre: Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_TH[...]
Responsable: GRANET Sylvie

Révision 079b06398d98

Date: 12/10/2016 Page: 1/6

Clé: U3.14.07

Modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_THHM

Résumé:

Ce document décrit pour les modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH et 3D_THHM:

- les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- les mailles supports afférentes,
- les matériaux et chargements supportés,
- les options de calculs pour les matrices élémentaires et les post-traitements,
- les possibilités non linéaires ainsi que les options de la mécanique de la rupture si elles existent.

Les modélisations 3D_HM, 3D_HHM, 3D_THM, 3D_THH, 3D_THHM, (Phénomène : MECANIQUE) correspondent à des éléments finis dont les mailles supports sont volumiques.

Responsable: GRANET Sylvie

Date: 12/10/2016 Page: 2/6 Clé: U3.14.07

Révision

079b06398d98

Discrétisation

1.1 Degrés de libertés

DX, DY et DZ désignent les degrés de libertés de déplacement.

PRE1 et PRE2 désignent deux degrés de liberté de pression, dont la signification précise dépend des lois de comportement utilisées. TEMP désigne la température.

Élément fini	Degrés de liberté			
3D_HM	DX, DY, DZ, PRE1			
3D_HHM	DX, DY, DZ, PRE1, PRE2			
3D_THM	DX, DY, DZ, PRE1, TEMP			
3D_THH	PRE1, PRE2, TEMP			
3D THHM	DX, DY, DZ, PRE1, PRE2, TEMP			

Maille support des matrices de rigidité 1.2

Les mailles support des éléments finis ne peuvent être que des héxaèdres. Les éléments sont iso-paramétriques.

Modélisation	Maille	Interpolation	Remarques
3D_HM	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression	La pression d'un nœud milieu est la moyenne des nœuds sommets du segment
ЗD_ННМ	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression	Les pressions d'un nœud milieu sont les moyennes des nœuds sommets du segment
3D_THM	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression et température	La pression et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THH	HEXA20	Tri-linéaire sur 8 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THHM	HEXA20	Serendip 20 nœuds en déplacement tri-linéaire sur 8 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment

Responsable: GRANET Sylvie

Date: 12/10/2016 Page: 3/6 Clé: U3.14.07

Révision 079b06398d98

1.3 Maille support des chargements

Modélisation	Maille	Interpolation	Remarques
3D_HM	QUAD8	déplacement bi-linéaire sur 4	La pression d'un nœud milieu est la moyenne des nœuds sommets du segment
ЗД_ННМ	QUAD8		Les pressions d'un nœud milieu sont les moyennes des nœuds sommets du segment
3D_THM	QUAD8	·	La pression et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
3D_THH	QUAD8	Bi-linéaire sur 4 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
ЗО_ТННМ	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment

Signification des symboles

•	correspond à une fonctionnalité disponible									
	correspond à une fonctionnalité qui pourrait exister mais non disponible							disponible		
	actuellemen	t								
Name de consequence à un tout mottant en course la fonctionnalité										

Nom de cas- correspond à un test mettant en œuvre la fonctionnalité test

Matériaux supportés 3

DEFI_MATERIAU	3D_HM	3D_HHM	3D_THM	3D_ТНН	3D_THHM
THM LIQU	SSNV134C	WTNV112B	WTNV109A	•	•
THM GAZ	SSNV134C	WTNV122B	WTNV109A	•	•
THM VAPE GAZ		WTNV112B		•	•
THM INIT	SSNV134C	WTNV112B	WTNV109A	•	•
THM DIFFU	SSNV134C	WTNV112B	WTNV109A	•	•
ELAS	SSNV134C	WTNV112B	WTNV109A		•
CJS	SSNV134C	•	•		•
ELAS THM			WTNV115A		•
SURF ETAT SATU			WTNV116A		
CAM CLAY THM			WTNV117A		
SURF ETAT NSAT					•

Responsable: GRANET Sylvie

Date: 12/10/2016 Page: 4/6 Clé: U3.14.07

Révision

079b06398d98

Chargements supportés

4.1 AFFE CHAR MECA

	Tous les éléments de cette note	Remarques
DDL IMPO	SSNV134C	
FACE_IMPO	SSNV134C	
LIAISON_DDL	•	
LIAISON_OBLIQUE	•	
LIAISON_GROUP	•	
LIAISON_UNIF	•	
LIAISON_SOLIDE	•	
LIAISON_ELEM	•	
LIAISON_CHAM_NO	•	
PESANTEUR	•	
ROTATION		
FORCE_NODALE	•	
FORCE_FACE		
FORCE_ARETE		
FORCE_INTERNE	•	
PRES_REP	SSNV134C	
EPSI_INIT		
FLUX_THM_REP	WTNV114C	
PRES_CALCULEE	•	
EPSA_CALCULEE		

Responsable : GRANET Sylvie

Date : 12/10/2016 Page : 5/6 Clé : U3.14.07 Révision

Révision 079b06398d98

4.2 AFFE CHAR MECA F

	Tous les éléments de cette note	Remarques
DDL IMPO	•	
FACE_IMPO	•	
LIAISON_DDL	•	
LIAISON_OBLIQUE	•	
LIAISON_GROUP	•	
LIAISON_UNIF	•	
LIAISON_SOLIDE	•	
FORCE_NODALE	•	
FORCE FACE	•	
FORCE ARETE		
FORCE INTERNE	•	
PRES REP	•	
EPSI_INIT		
FLUX THM REP	•	

5 Possibilités non-linéaires

5.1 STAT NON_LINE

COMPORTEMENT	RELATION	3D_HM	3D_HHM	3D_THM	3D_THH	3D_THHM
	KIT_HM	SSNV13 4C				
	KIT_HHM		WTNV112B			
	KIT_THM			WTNV109A		
	KIT_THH				•	
	KIT THHM					•

6 Calculs de matrices élémentaires

OPTIONS		Remarques
'RIGI_MECA_TANG'	•	
`FULL MECA'	•	
'RAPH MECA'	•	
'FORC_NODA'	•	Si FORC NODA est appelé à partir de
		REAC_NODA

seuls les termes de mécanique sont calculés

Responsable: GRANET Sylvie

Date: 12/10/2016 Page: 6/6 Clé: U3.14.07

Révision

079b06398d98

Post-traitement du calcul

7.1 Options CALC CHAMP

OPTIONS	Tous les éléments de cette note	Remarques
'SIEF_ELNO'	SSNV134C	
'VARI ELNO'	•	
'EPSI ELNO'		
'EPSI ELGA'		
'FORC_NODA'	•	Si FORC_NODA est appelé à partir de REAC_NODA seuls les termes de mécanique sont calculés
'REAC_NODA'	•	Seuls les termes de mécanique sont calculés