Titre : Modélisation 3D_INCO_UPG Responsable : ABBAS Mickaël Date : 10/05/2019 Page : 1/4 Clé : U3.14.06 Révision

3f3be08d503c

Modélisation 3D_INCO_UPG

Résumé:

Ce document décrit pour la modélisation 3D INCO UPG:

- les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- les mailles supports afférentes,
- · les lois de comportement et les chargements supportés,
- les possibilités non-linéaires,
- les cas-tests mettant en œuvre la modélisation.

Cette modélisation est basée sur des éléments finis adaptés au traitement des problèmes quasi-incompressibles. Elle est indispensable pour réaliser des calculs d'analyse limite avec la loi de Norton-Hoff et est aussi utile pour les études présentant de fortes déformations plastiques pour lesquelles la formulation classique en déplacement se révèle insuffisante (oscillation des contraintes). La formulation utilisée est une formulation à 3 champs : déplacement-pression-gonflement [R6.03.05] , utilisable avec tous les comportements écrits sous forme incrémentale. La modélisation 3D_INCO_UPG a des mailles supports volumiques et accepte les TETRA10, les HEXA20, et les PENTA15.

Titre : Modélisation 3D_INCO_UPG Date : 10/05/2019 Page : 2/4
Responsable : ABBAS Mickaël Clé : U3.14.06 Révision

3f3be08d503c

1 Discrétisation

1.1 Degrés de liberté

Modélisation	Degré de liberté à tous les nœuds	Degré de liberté uniquement aux nœuds sommets
3D	DX, DY, DZ	PRES(*), GONF

^{*} aucune condition cinématique ne peut être imposé sur le degré de liberté PRES.

1.2 Maille support des matrices de rigidité

Pour la modélisation 3D, les mailles support des éléments finis peuvent être des tétraèdres, des hexaédres ou des prismes.

Modélisation	Maille	Interpolation en déplacements	Interpolation en pression et gonflement
3D	TETRA10	Quadratique	Linéaire
	HEXA20	Quadratique	Linéaire
	PENTA15	Quadratique	Linéaire

1.3 Maille support des chargements surfaciques

Modélisation	Maille	Interpolation en déplacements
3D	TRIA6	Quadratique
	QUAD8	Quadratique

2 Chargements supportés

Les chargements disponibles sous AFFE CHAR MECA sont les suivants :

• 'FORCE ARETE'

Permet pour appliquer des forces linéiques, à une arête d'élément volumique.

'FORCE FACE'

Permet d'appliquer des forces surfaciques sur une face d'élément volumique.

• 'FORCE INTERNE'

Permet d'appliquer des forces volumiques.

• 'PESANTEUR'

Permet d'appliquer un chargement de type pesanteur.

• 'PRES REP'

Permet pour appliquer une pression à un domaine de milieu continu.

Titre : Modélisation 3D_INCO_UPG Responsable : ABBAS Mickaël Date : 10/05/2019 Page : 3/4 Clé : U3.14.06 Révision

3f3be08d503c

3 Possibilités non-linéaires

Attention, cette modélisation n'est accessible qu'à partir de STAT_NON_LINE. Elle ne peut pas être utilisée avec MECA STATIQUE ou par un assemblage manuel.

3.1 Lois de comportement

Toutes les lois de comportement utilisables sur des mailles de milieux continus ont un sens physique pour ces modélisations et sont affectables à partir du moment où elles sont accessibles à partir de COMPORTEMENT dans STAT NON LINE (Cf. [U4.51.11]).

Signalons qu'une loi de comportement est spécifique à cette modélisation (dédiée au calcul de charge limite, cf. [R7.07.01]):

```
/ ' NORTON HOFF '
```

3.2 Déformations

Les déformations disponibles, utilisées dans les relations de comportement sous le mot clé ${\tt DEFORMATION}$ pour les opérateurs ${\tt STAT_NON_LINE}$, ${\tt DYNA_NON_LINE}$ et ${\tt CALCUL}$ sont (Cf. ${\tt [U4.51.11]}$):

```
/ 'PETIT'
```

Les déformations utilisées pour la relation de comportement sont les déformations linéarisées.

```
/ 'SIMO_MIEHE'
'GDEF LOG'
```

Permet de réaliser des calculs en grandes déformations plastiques.

3.3 Méthode de Newton

Pour la résolution du problème par la méthode de Newton-Raphson, la matrice élastique n'est pas disponible. Il faut donc utiliser sous le mot-clé NEWTON pour les opérateurs STAT_NON_LINE et DYNA NON LINE (Cf. [U4.51.11]):

```
/ PREDICTION = 'TANGENTE'
```

La phase de prédiction est réalisée avec la matrice tangente.

```
/ MATRICE = 'TANGENTE'
```

La matrice utilisé pour les itérations globale est la matrice tangente

Remarque:

La formulation utilisée conduit à des matrices non positives et les solveurs actuels ne savent pas toujours bien résoudre les systèmes linéaires qui leur sont associées. En cas de difficulté de convergence, il peut donc être utile de tester les autres solveurs disponibles dans le code ou les autres méthodes de renumérotations (cf. [U4.50.01]).

4 Exemples de mise en œuvre : cas-tests

Titre : Modélisation 3D_INCO_UPG Responsable : ABBAS Mickaël Date : 10/05/2019 Page : 4/4 Clé : U3.14.06 Révision

3f3be08d503c

- Petites déformations :
 - SSLV130A [V3.04.130] : Analyse d'un cylindre creux en incompressible, soumis à une pression interne.
- · Grandes déformations :
 - SSNV112A [V6.04.112] : Analyse d'un cylindre creux en incompressible en grandes déformations, soumis à un déplacement radial interne.
- Analyse limite :
 - SSNV124B [V6.04.124] : Détermination de la charge limite d'un cube soumis à des chargements sur ses bords.