Titre: Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D[...] Date: 26/09/2013 Page: 1/6
Responsable: GRANET Sylvie Clé: U3.13.08 Révision

Révision 72e742fb33ff

Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D_PLAN_THHM, AXIS_HM, AXIS_HHM, AXIS_THM, AXIS_THH, AXIS_THHM

Résumé:

Ce document décrit pour les modélisations D PLAN et AXIS en thermo_hydro_mécanique :

- les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- les mailles supports afférentes,
- les matériaux et chargements supportés,
- les options de calculs pour les matrices élémentaires et les post traitements,
- les possibilités non linéaires ainsi que les options de la mécanique de la rupture si elles existent.

Les modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D_PLAN_THH, D_PLAN_THHM, AXIS_HM, AXIS_HHM, AXIS_THH, AXIS_THH, AXIS_THHM, (Phénomène: MECANIQUE) correspondent à des éléments finis dont les mailles supports sont surfaciques.

Titre: Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D[...] Date: 26/09/2013 Page: 2/6
Responsable: GRANET Sylvie Clé: U3.13.08 Révision

72e742fb33ff

1 Discrétisation

1.1 Degrés de libertés

DX, DY désignent les degrés de libertés de déplacement.

PRE1 et PRE2 désignent deux degrés de liberté de pression, dont la signification précise dépend des lois de comportement utilisées. TEMP désigne la température.

Modélisation	Degrés de liberté (à chaque nœud sommet)
D_PLAN_HM	DX, DY, PRE1
AXIS_HM	
D_PLAN_HMD	
AXIS_HMD	
D_PLAN_HMS	
AXIS_HMS	
D_PLAN_HHM	DX, DY, PRE1, PRE2
AXIS_HHM	
D_PLAN_HHMD	
AXIS_HHMD	
D_PLAN_HHMS	
AXIS_HHMS	
D_PLAN_THM	DX, DY, PRE1, TEMP
AXIS_THM	
D_PLAN_THMD	
AXIS_THMD	
D_PLAN_THMS	
AXIS_THMS	
D_PLAN_THHD	PRE1, PRE2, TEMP
AXIS_THHD	
D_PLAN_THHS	
AXIS_THHS	
D_PLAN_THHMD	DX, DY, PRE1, PRE2, TEMP
AXIS_THHMD	
D_PLAN_THHMS	
AXIS_THHMS	

1.2 Maille support des matrices de rigidité

Les mailles support des éléments finis peuvent être des tétraèdres, des pyramides, des prismes ou des héxaèdres. Les éléments sont iso-paramétriques. Les notations (_,S,D) concernent le type d'intégration qui peut être classique, lumpé ('D') ou bien sélectif ('S').

Modélisation	Maille	Interpolation	Remarques
D_PLAN_HM(_, S,D) AXIS_HM(_,S, D)	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression	La pression d'un nœud milieu est la moyenne des nœuds sommets du segment
D_PLAN_HHM(_ ,S,D) AXIS_HHM(_,S ,D)	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression	Les pressions d'un nœud milieu sont les moyennes des nœuds sommets du segment

Titre: Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D[...] Date: 26/09/2013 Page: 3/6
Responsable: GRANET Sylvie Clé: U3.13.08 Révision

72e742fb33ff

D_PLAN_THM(_ ,S,D) AXIS_THM(_,S ,D)	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression et température	La pression et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
D_PLAN_THH(S,D) AXIS_THH(S,D)	QUAD8	Bi-linéaire sur 4 nœuds en pression et température	température d'un nœud milieu sont la moyenne des nœuds sommets du segment
D_PLAN_THHM(S,D) AXIS_THHM(S, D)	QUAD8	Serendip 8 nœuds en déplacement bi-linéaire sur 4 nœuds en pression et température	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
D_PLAN_HM(_, S,D) AXIS_HM(_,S, D)	TRIA6	Quadratique en déplacement linéaire en pression	La pression d'un nœud milieu est la moyenne des nœuds sommets du segment
D_PLAN_HHM(_ ,S,D) AXIS_HHM(_,S ,D)	TRIA6	Quadratique en déplacement linéaire en pression	Les pressions d'un nœud milieu sont les moyennes des nœuds sommets du segment
D_PLAN_THM(_ ,S,D) AXIS_THM(_,S ,D)	TRIA6	Quadratique en déplacement linéaire en pression et température	•
D_PLAN_THH(S,D) AXIS_THH(S,D)	TRIA6	Linéaire	Les pressions et la température d'un nœud milieu sont la moyenne des nœuds sommets du segment
D_PLAN_THHM(TRIA6	Quadratique en déplacement linéaire en pression et	Les pressions et la température d'un nœud milieu

1.3 Maille support des chargements

Modélisation	Maille	Interpolation	Remarques
D_PLAN_HM(_, S,D) AXIS_HM(_,S, D)	SEG3	Quadratique en déplacement, linéaire en pression	La pression du nœud milieu est la moyenne des nœuds sommets du segment
D_PLAN_HHM(_ ,S,D) AXIS_HHM(_,S ,D)	SEG3	Quadratique en déplacement, linéaire en pression	Les pressions du nœud milieu sont les moyennes des nœuds sommets du segment
D_PLAN_THM(_ ,S,D) AXIS_THM(_,S ,D)	SEG3	Quadratique en déplacement, linéaire en pression et température	•
D_PLAN_THH(S,D) AXIS_THH(S,D)	SEG3	Linéaire	Les pressions et la température du nœud milieu sont la moyenne des nœuds sommets du segment
D_PLAN_THHM(S,D) AXIS_THHM(S, D)	SEG3	Quadratique en déplacement, linéaire en pression et température	

cas-test

Titre: Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D[...] Date: 26/09/2013 Page: 4/6
Responsable: GRANET Sylvie Clé: U3.13.08 Révision

Révision 72e742fb33ff

2 Signification des symboles

correspond à une fonctionnalité disponible
 Nom de correspond à un test mettant en œuvre la fonctionnalité

correspond à une fonctionnalité qui pourrait exister mais non disponible actuellement

3 Matériaux supportés

DEFI_MATERIAU	D_PLAN_HM AXIS_HM	D_PLAN_HHM AXIS_HHM	D_PLAN_THM AXIS_THM	D_PLAN_THH AXIS_THH	D_PLAN_THHM AXIS_THHM
THM LIQU	WTNV113B	WTNV112A	WTNV109B	•	WTNV118A
THM GAZ	WTNV113A	WTNV112A	WTNV109B	•	WTNV118A
THM VAPE GAZ		WTNV112A		•	WTNV118A
THM INIT	WTNV113A	WTNV112A	WTNV109B	•	WTNV118A
THM_DIFFU	WTNV113A	WTNV112A	WTNV109B	•	WTNV118A
ELAS	WTNV113A	WTNV112A	WTNV109B		•
CJS	•	•	•		•
ELAS_THM			WTNV120A		WTNV118A
SURF_ETAT_SATU			WTNV120B		
CAM_CLAY_THM			•		
SURF ETAT NSAT					WTNV118A

4 Chargements supportés

4.1 AFFE CHAR MECA

	Tous les éléments	Remarques
	de cette note	
DDL IMPO	WTNV113A	
FACE IMPO	•	
LIAISON DDL	WTNV109C	
LIAISON_OBLIQUE	•	
LIAISON_GROUP	•	
LIAISON UNIF	•	
LIAISON SOLIDE	•	
LIAISON_ELEM	•	
LIAISON CHAM NO	•	
PESANTEUR	•	
ROTATION		
FORCE NODALE	WTNV120A	
FORCE FACE		
FORCE ARETE		
FORCE INTERNE	•	
PRES_REP	•	
EPSI_INIT		
FLUX_THM_REP	WTNV114A	
PRES CALCULEE	•	
EPSA CALCULEE		

Titre: Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D[...] Date: 26/09/2013 Page: 5/6
Responsable: GRANET Sylvie Clé: U3.13.08 Révision

72e742fb33ff

4.2 AFFE_CHAR_MECA_F

	Tous les éléments	Remarques
	de cette note	
DDL_IMPO	•	
FACE_IMPO	•	
LIAISON_DDL	•	
LIAISON_OBLIQUE	•	
LIAISON_GROUP	•	
LIAISON_UNIF	•	
LIAISON_SOLIDE	•	
FORCE_NODALE	•	
FORCE FACE	•	
FORCE ARETE		
FORCE INTERNE	•	
PRES_REP	•	
EPSI_INIT		
FLUX_THM_REP	•	

5 Possibilités non-linéaires

5.1 STAT_NON_LINE

COMPORTEMENT	RELATION	D_PLAN_HM AXIS HM	D_PLAN_HH M	D_PLAN_THM AXIS THM	D_PLAN_THH AXIS THH	D_PLAN_THHM AXIS THHM
		_	AXIS_HHM	_	_	
	KIT_HM	WTNV113A				
	KIT_HHM		WTNV112A			
	KIT_THM			WTNV109B		
	KIT_THH				•	
	KIT THHM					WTNV118A

6 Calculs de matrices élémentaires

OPTIONS		Remarques
'RIGI_MECA_TANG'	•	
`FULL_MECA'	•	
'RAPH MECA'	•	

Titre: Modélisations D_PLAN_HM, D_PLAN_HHM, D_PLAN_THM, D[...]
Responsable: GRANET Sylvie

Clé : U3.13.08 Révision 72e742fb33ff

Date: 26/09/2013 Page: 6/6

7 Post-traitement du calcul

7.1 Options CALC CHAMP aux éléments

OPTIONS		Remarques
'SIEF_ELNO'	WTNV109C	Sauf pour les éléments ayant pour support des TRIA6
'VARI_ELNO'	•	
'EPSI_ELNO'		
'EPSI ELGA'		

7.2 Options CALC_CHAMP aux noeuds

	D_PLAN	Remarques
'FORC_NODA'	•	Si FORC_NODA est appelé à partir de REAC_NODA seuls les termes de mécanique sont calculés
'REAC_NODA'	•	Seuls les termes de mécanique sont calculés