Titre: Modélisations TUYAU 3M et TUYAU 6M

Date: 26/09/2013 Page: 1/4 Responsable : FLÉJOU Jean-Luc Clé: U3.11.06 Révision b137754f06cb

Modélisations TUYAU 3M et TUYAU 6M

Résumé:

Ce document décrit pour les modélisations TUYAU 3M et TUYAU 6M:

- •les degrés de liberté portés par les éléments finis qui supportent la modélisation,
- •les mailles supports afférentes.
- ·les chargements supportés.
- ·les possibilités non-linéaires,
- ·les cas-tests mettant en œuvre les modélisations.

Les modélisations TUYAU 3M et TUYAU 6M correspondent à une formulation d'éléments linéiques de tuyauterie droite ou courbe, qui s'appuient sur une cinématique de poutre de Timoshenko pour les déplacements et les rotations de la fibre moyenne et sur une cinématique de coque pour les déformations de la section transverse (ovalisation, gauchissement, gonflement). Ces déformations transverses sont décomposées en séries de Fourier. La modélisation TUYAU 3M prend en compte 3 modes au maximum, tandis que la modélisation TUYAU 6M prend en compte 6 modes de Fourier.

Ces modélisations sont utilisables pour des problèmes de tuyauteries tridimensionnelles en analyse mécanique linéaire ou non linéaire et en petits déplacements.

Version default

Code_Aster

Titre : Modélisations TUYAU_3M et TUYAU_6M

Responsable : FLÉJOU Jean-Luc

Date: 26/09/2013 Page: 2/4 Clé: U3.11.06 Révision

b137754f06cb

Table des Matières

1 Discrétisation	3
1.1 Degrés de libertés	
1.2 Maille support des matrices de rigidité	
2 Affectation des caractéristiques	
3 Chargements supportés	
4 Possibilités non-linéaires	
4.1 Loi de comportements	
4.2 Déformations.	
5 Exemples de mise en œuvre : cas-tests	

Titre : Modélisations TUYAU_3M et TUYAU_6M Date : 26/09/2013 Page : 3/4
Responsable : FLÉJOU Jean-Luc Clé : U3.11.06 Révision

Révision b137754f06cb

1 Discrétisation

1.1 Degrés de libertés

Les degrés de liberté sont, en chaque nœud de la maille support :

- les six composantes de déplacement de la fibre moyenne (trois translations et trois rotations),
- trois degrés de liberté correspondant aux modes 0 et 1,
- pour chaque mode de Fourier 6 degrés de liberté (U correspond au gauchissement, V au déplacement orthoradial, W au déplacement radial).

Élément fini	D	egrés de	liberté (à	chaque no	eud somm	et)	Remarques
TUYAU 3M	DX	DY	DZ	DRX	DRY	DRZ	
_	WO	WI1	WO1				
	UI2	VI2	WI2	UO2	VO2	WO2	mode 2
	UI3	VI3	WI3	UO3	VO3	WO3	mode 3
TUYAU_6M	DX	DY	DZ	DRX	DRY	DRZ	
	WO	WI1	WO1				
	UI2	VI2	WI2	UO2	VO2	WO2	mode 2
	UI3	VI3	WI3	UO3	VO3	WO3	mode 3
	UI4	VI4	WI4	UO4	VO4	WO4	mode 4
	UI5	VI5	WI5	UO5	V05	WO5	mode 5
	UI6	VI6	WI6	U06	V06	W06	mode 6

1.2 Maille support des matrices de rigidité

Les mailles support des éléments finis, en formulation déplacement, sont des segments à 3 ou 4 nœuds.

Modélisation	Maille	Élément fini	Remarques
TUYAU_3M	SEG3	MET3SEG3	
	SEG4	MET3SEG4	
TUYAU_6M	SEG3	MET6SEG3	

2 Affectation des caractéristiques

Pour ces éléments de structures 1D, il est nécessaire d'affecter des caractéristiques géométriques qui sont complémentaires aux données de maillage. La définition de ces données est effectuée avec la commande AFFE CARA ELEM associé aux mots clés facteurs suivants :

• POUTRE

Permet de définir et d'affecter les caractéristiques de la section transversale.

Modélisations supportées: TUYAU 3M, TUYAU 6M

•ORIENTATION

Permet de définir et d'affecter une génératrice. Modélisations supportées : TUYAU_3M, TUYAU 6M

• MASSIF

Facultatif, permet de définir et d'affecter une direction de grandissement (nécessaire uniquement dans le cas d'une loi de comportement ASSE COMBU).

Modélisations supportées : TUYAU 3M, TUYAU 6M

3 Chargements supportés

Les chargements disponibles sont les suivants :

• 'FORCE POUTRE'

Permet d'appliquer des forces linéiques

Modélisations supportées: TUYAU 3M, TUYAU 6M

• 'FORCE_TUYAU'

Titre: Modélisations TUYAU 3M et TUYAU 6M

Date: 26/09/2013 Page: 4/4 Responsable : FLÉJOU Jean-Luc Clé: U3.11.06 Révision

b137754f06cb

Permet d'appliquer une pression dans le tuyau. Modélisations supportées: TUYAU 3M, TUYAU 6M

• 'PESANTEUR'

Permet d'appliquer un chargement de type pesanteur. Modélisations supportées: TUYAU 3M, TUYAU 6M

L'application d'un chargement de dilatation thermique est effectué en définissant le mot clé facteur AFFE VARC sous AFFE MATERIAU [U4.43.03].

Possibilités non-linéaires 4

4.1 Loi de comportements

Toutes les lois de comportements disponibles en C PLAN sont utilisables sous COMPORTEMENT dans STAT NON LINE et DYNA NON LINE (Cf. [U4.51.11]).

4.2 **Déformations**

Seul les déformations linéarisées mot-clé 'PETIT' sous DEFORMATION sont disponibles dans les relations de comportement (Cf. [U4.51.11]).

Exemples de mise en œuvre : cas-tests 5

TUYAU 3M

- Statique linéaire
 - •FORMA01E [V7.15.100]: Analyse d'une tuyauterie comportant un coude encastrée à une extrémité et soumis à une force à l'autre extrémité.
 - SSLL106A [V3.01.106]: Analyse quasi-statique d'un tuyau droit encastré à une extrémité et soumis à une traction, 2 efforts tranchants, 2 moments de flexion et une torsion à l'autre extrémité. On applique de plus une pression interne, une force linéique répartie et une dilatation thermique.
- Statique non-linéaire
 - SSNL117A [V6.02.117]: Analyse élasto-plastique d'un coude encastrée à une extrémité et soumis à un chargement de flexion dans son plan à l'autre extrémité.
- Dynamique linéaire
 - •SDLL14A [V2.02.014]: Recherche des fréquences propres et des modes associés d'une tuyauterie coudée.
- •Dynamique non-linéaire
 - •SDNL113A: Réponse dynamique élasto-plastique d'une tuyauterie en forme de lyre soumise à un chargement sismique.

TUYAU 6M

- Statique linéaire
 - •SSLL106C [V3.01.106] : Analyse quasi-statique d'un tuyau droit encastré à une extrémité et soumis à une traction, 2 efforts tranchants, 2 moments de flexion et une torsion à l'autre extrémité. On applique de plus une pression interne, une force linéique répartie et une dilatation thermique.
- Statique non-linéaire
 - •HSNV100D [V7.22.100] : Analyse thermoplastique en traction simple d'un tuyau droit.
- Dynamique linéaire
 - •SDLL14B [V2.02.014]: Recherche des fréquences propres et des modes associés d'une tuyauterie coudée.