Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 1/67 Clé : R7.01.23 Révision

c173ed655b50

Loi de comportement cyclique de HUJEUX pour les sols

Résumé:

Le modèle de comportement dit de « Hujeux », conçu au laboratoire MSSMat de l'ECP [bib 5], est un des modèles élastoplastiques cycliques de mécanique des sols (géomatériaux granulaires : argiles sableuses, normalement consolidées ou sur-consolidées, graves...) le plus adapté pour des simulations d'ouvrages géotechniques en séisme. Il est de plus exploité depuis de nombreuses années, son paramétrage étant donc bien maîtrisé.

Ce modèle multi-mécanismes (sphériques – pour un trajet de consolidation – et déviatoires) à variables mémoratrices est caractérisé par huit surfaces de charge avec écrouissage, définies pour des trajets monotones et pour des trajets cycliques. Les mécanismes sont définis par plans fixes, ce qui induit une orthotropie de comportement du sol. A l'intérieur de ces surfaces de réversibilité, le matériau est élastique non linéaire. L'écrouissage est régi par plusieurs variables et la règle d'écoulement normal est adoptée pour les mécanismes de consolidation, tandis que la règle d'écoulement pour les mécanismes déviatoires est non associée, suivant la règle de dilatance de Roscoe. Comme d'autres modèles de comportement de sols, l'écrouissage est positif en phase pré-pic et négatif en phase post-pic, qui correspond à l'effet de la dilatance ; ces effets induisent le comportement de « liquéfaction » du sol. Le tenseur de déformation plastique résulte du cumul des contributions de divers mécanismes actifs. La déformation plastique volumique couple les mécanismes.

On décrit les équations du modèle, son paramétrage, puis son intégration numérique selon un schéma général de Newton implicite. Les utilisateurs ont la possibilité d'accéder à quatre schémas d'intégration implicite pour le modèle de Hujeux : 'NEWTON', 'NEWTON PERT', 'NEWTON RELI' et 'SPECIFIQUE'.

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 2/67 Clé : R7.01.23 Révision

Révision c173ed655b50

Table des Matières

1 Formulation théorique	4
1.1 Relation de comportement de Hujeux	
1.1.1 Définition des variables d'état et expression de l'énergie libre	
1.1.1.1 Variables d'état	
1.1.1.2 énergie libre	6
1.1.1.3 Loi élastoplastique non linéaire de Hujeux	6
1.1.2 Mécanismes élastoplastiques déviatoires	
1.1.2.1 Critères déviatoires en chargement monotone	7
1.1.2.2 Lois d'écoulement et d'écrouissage en chargement monotone pour les	
mécanismes déviatoires	8
1.1.2.3 Critères déviatoires en chargement cyclique	10
1.1.2.4 Lois d'écoulement et d'écrouissage en chargement cyclique	11
1.1.3 Mécanismes élastoplastiques de consolidation sphériques	14
1.1.3.1 Critère de consolidation en chargement monotone	14
1.1.3.2 Lois d'écoulement et d'écrouissage en chargement monotone	
1.1.3.3 Critère de consolidation en chargement cyclique	15
1.1.3.4 Lois d'écoulement et d'écrouissage en chargement cyclique	16
1.1.4 Traitement de la traction complémentaire à la loi de Hujeux	17
1.1.5 Évolution élastoplastique totale	18
1.2 Identification des paramètres caractéristiques du matériau	19
2 Intégration numérique de la relation de comportement	22
2.1 Rappel du problème	22
2.2 Schéma général d'intégration locale	23
2.2.1 Phase de prédiction	24
2.2.1.1 Mécanismes plastiques potentiellement activés	24
2.2.2 Phase de correction : équations non linéaires à résoudre	26
2.2.2.1 Itérations de correction de Newton	26
2.2.3 Phase de mise à jour	29
2.2.3.1 Mécanismes plastiques réellement activés	29
2.2.4 Calcul de la matrice de raideur tangente incrémentale	33
2.3 Opérateur tangent en vitesse : option RIGI_MECA_TANG	36
2.4 Opérateur tangent incrémental : option FULL_MECA	37
3 Implantation dans Code_Aster	39
3.1 Variables internes	39
4 Fonctionnalités et vérification	41
5 Bibliographie	43
6 Annexe 1 : calcul analytique de la matrice tangente d'intégration locale	44
6 1 Dérivées de l'équation d'état	45

Version default

Code_Aster

Titre : Loi de comportement cyclique de Hujeux pour les so[...]

Responsable : M'JAHAD Sofia

Date : 22/11/2019	Page : 3/67
Clé : R7.01.23	Révision

c173ed655b50

	6.2 Dérivées de l'équation d'évolution de la déformation plastique	48
	6.3 Dérivées de l'équation d'évolution de l'écrouissage déviatoire	50
	6.4 Dérivées de l'équation d'évolution de l'écrouissage sphérique	52
	6.5 Dérivées des critères des mécanismes déviatoriques	53
	6.6 Dérivées des critères des mécanismes de consolidation sphériques	54
7	Annexe 2 : notation des tenseurs, de leurs invariants et expressions de diverses dérivées	55
8	Annexe 3 : Validité de la formulation multi-mécanisme de la loi de Hujeux	59
	8.1 Représentation d'un état de contrainte par les cercles de Mohr	59
	8.2 Critère de plasticité de type Mohr-Coulomb	.60
	8.3 Expression du critère de plasticité de Hujeux	.61
	8.4 Validité du critère de Hujeux	.62
	8.5 Conclusions.	. 63
9	Annexe 4 : Stratégie de redécoupage interne de la loide Hujeux	65

Date: 22/11/2019 Page: 4/67 Responsable: M'JAHAD Sofia Clé: R7.01.23 Révision

c173ed655b50

Formulation théorique

1.1 Relation de comportement de Hujeux

Le modèle décrit ici est le modèle dit de Hujeux. Le modèle a été développé par l'École Centrale Paris (laboratoire LMSSMat) dans les années 80 afin de représenter la rhéologie des sols pour des chargements alternés, par exemple en séisme. Cette relation de comportement de mécanique des sols est un modèle multi-mécanismes, caractérisé par deux fois quatre surfaces de charge avec écrouissage : trois reliées à des mécanismes déviatoires et une à un mécanisme de consolidation sphérique, définies pour des trajets monotones et pour des trajets cycliques. Les mécanismes déviatoires sont définis sur trois plans fixes, ce qui induit une orthotropie de comportement du sol. Les mécanismes sphériques reproduisent la forte non-linéarité des géomatériaux sur un chemin de consolidation.

Chacun de ces plans, indicé par k, est défini par les vecteurs de base $(\mathbf{e}_{ik}, \mathbf{e}_{ik})$, extraits de la base orthonormée (e_1, e_2, e_3) de l'espace à 3 dimensions. On note les indices :

$$i_k = 1 + \text{mod}(k, 3)$$
 et $j_k = 1 + \text{mod}(k+1, 3)$ éq 1.1-1

Remarque:

En situation 2D déformations planes, le plan k=3 correspond au plan $(\mathbf{e_1},\mathbf{e_2})$ du modèle .

Le modèle comporte une élasticité non linéaire contrôlée par le module d'Young dépendant de la pression de confinement.

Un critère limite tridimensionnel proche de celui de Mohr-Coulomb est considéré pour prendre en compte l'influence de la contrainte moyenne effective sur la raideur du sol et des caractéristiques de rupture. Le concept d'état critique est également intégré à ce modèle pour représenter le couplage entre les contraintes déviatoires et les variations de volume et formuler l'écrouissage isotrope lié au milieu granulaire. Un écrouissage cinématique est ajouté pour représenter le comportement cyclique des sols et couplé à l'écrouissage en densité du sol.

Le modèle de Hujeux est exprimé en contraintes effectives – définies comme étant la différence entre les contraintes totales et la pression de l'eau dans le cas des sols saturés – dans le cas du couplage hydromécanique : c'est à dire on ne prend pas en compte la pression hydrostatique du fluide qui peut circuler dans les pores, celle-ci étant calculée dans les modélisations THM.

1.1.1 Définition des variables d'état et expression de l'énergie libre

1.1.1.1 Variables d'état

Les variables servant à décrire l'état du point matériel sont les suivantes :

- tenseur déformation, ع : tenseur déformation,
- $\mathbf{\epsilon}^{\mathbf{p}}$: tenseur déformation plastique ; on note spécialement $\mathbf{\epsilon}^{p} = \operatorname{tr} \mathbf{\epsilon}^{p} = \mathbf{\epsilon}^{\mathbf{p}}$. I la déformation plastique volumique, I étant le tenseur identité,
- r_k^m : les « facteurs de mobilisation » des mécanismes déviatoires en trajet monotone : c'est un écrouissage dans le plan pression-cisaillement,
- r_{ν}^{c} : les « facteurs de mobilisation » des mécanismes déviatoires cycliques : c'est un écrouissage mixte isotrope et cinématique dans le plan pression-cisaillement.

Titre : Loi de comportement cyclique de Hujeux pour les so[...]
Responsable : M'JAHAD Sofia

c173ed655b50

- r_4^m : le facteur de mobilisation du mécanisme de consolidation en trajet monotone : c'est un écrouissage du mécanisme sphérique de consolidation (scalaire),
- r_4^c : le facteur de mobilisation du mécanisme de consolidation en trajet cyclique : c'est un écrouissage mixte isotrope et cinématique (scalaire),

accompagnées d'un certain nombre de variables d'histoire discontinues, décrites ci-après.

Les divers mécanismes d'évolution élastoplastique font intervenir des variables d'écrouissage : les facteurs de mobilisation associés à chacun des mécanismes et la déformation volumique plastique $\varepsilon_{\nu}^p = \operatorname{tr} \varepsilon^p$, commune à l'ensemble des mécanismes et les couplant. Cette dernière modifie les surfaces de charge même si elles ne sont pas actives, du fait de l'écrouissage opéré sur les autres surfaces de charge activées : voir les [§ 1.1.2 et 1.1.3].

On note par σ le tenseur des contraintes (effectives), la pression de confinement étant : $p(\sigma) = \frac{1}{3} \operatorname{tr}(\sigma)$. Par convention dans *Code_Aster*, le cas de compression correspond aux contraintes (et aux déformations) négatives. Pour chaque mécanisme plastique dans le plan k, on note par :

$$\mathbf{\sigma}_{(k)} = \mathbf{P}_{(k)} \cdot \mathbf{\sigma} \cdot \mathbf{P}_{(k)}$$
 éq 1.1.1-1

les contraintes dans le plan k, où $\mathbf{P}_{(k)}$ désigne le tenseur (symétrique) de projection sur le plan de base $\left(\mathbf{e}_{i_k},\mathbf{e}_{j_k}\right)$, de normale \mathbf{e}_k :

$$\mathbf{P}_{(k)} = \mathbf{e}_{i_k} \otimes \mathbf{e}_{j_k} + \mathbf{e}_{j_k} \otimes \mathbf{e}_{i_k}$$
 éq 1.1.1-2

avec $i_k\!=\!1\!+\!\operatorname{mod}\left(k\!,\!3\right)$ et $j_k\!=\!1\!+\!\operatorname{mod}\left(k\!+\!1,\!3\right)$, soit :

$$\mathbf{\sigma}_{(k)} = \mathbf{\sigma}_{i_k i_k} \cdot \mathbf{e}_{i_k} \otimes \mathbf{e}_{i_k} + \mathbf{\sigma}_{j_k j_k} \cdot \mathbf{e}_{j_k} \otimes \mathbf{e}_{j_k} + \mathbf{\sigma}_{i_k j_k} \cdot \mathbf{e}_{i_k j_k} \otimes_s \mathbf{e}_{j_k}$$
 éq 1.1.1-3

puis la pression de confinement dans le plan $\,k\,$:

$$p_k(\mathbf{\sigma}) = \frac{1}{2} \operatorname{tr} \left(\mathbf{\sigma}_{(k)} \right)$$
 éq 1.1.1-4

On définit aussi le tenseur des contraintes déviatoires $\mathbf{S}_{(k)}$ dans le plan k, à l'aide du tenseur identité d'ordre 2 dans le plan : $\mathbf{I}_{(k)} = \delta_{i,j,k} \mathbf{e}_{i,k} \otimes \mathbf{e}_{j,k}$:

$$\mathbf{S}_{(k)}(\mathbf{\sigma}) = \mathbf{\sigma}_{(k)} - p_k(\mathbf{\sigma}) \cdot \mathbf{I}_{(k)}$$
 éq 1.1.1-5

On a bien $\operatorname{tr} \mathbf{S}_{(k)} = 0$. On note enfin la norme (von Mises) du tenseur des contraintes déviatoires $\mathbf{S}_{(k)}$.

$$q_{k}(\mathbf{\sigma}) = \|\mathbf{S}_{(k)}(\mathbf{\sigma})\|_{VM}^{2D} = \sqrt{\frac{1}{2} \mathbf{S}_{(k)\alpha\beta} \cdot \mathbf{S}_{(k)}^{\alpha\beta}}$$
 éq 1.1.1-6

Par ailleurs, plusieurs variables mémoratrices d'histoire irréversible conservent durant certaines phases de l'évolution les valeurs des variables d'état au début de ces phases, et régissent les évolutions subséquentes, enregistrant la valeur de cette variable au début du trajet où un mécanisme cyclique s'enclenche :

- p_H : variable scalaire discontinue mémoratrice, enregistrant la valeur de la pression de confinement $p(\mathbf{\sigma})$,
- $\epsilon^p_{\nu H}$: variable scalaire discontinue mémoratrice, enregistrant la valeur de la déformation plastique volumique,

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Clé: R7.01.23 Révision

Date: 22/11/2019 Page: 6/67

c173ed655b50

- $p_{\scriptscriptstyle kH}\,$: variable scalaire discontinue mémoratrice, enregistrant la valeur de la « pression de confinement du plan $k \gg p_k$,
- $\mathbf{S}_{[k]H}$: variable tensorielle discontinue mémoratrice, enregistrant la valeur des déviateurs des contraintes $\mathbf{S}_{|k|H}(\mathbf{\sigma})$ dans chaque plan k , dont l'expression est donnée en [éq 1.1.1-5],
- $\mathbf{S}_{[k]H}^c$: variable tensorielle discontinue mémoratrice, enregistrant la valeur des déviateurs des contraintes « modifiées » $\mathbf{S}^c_{(k)} \Big(\mathbf{\sigma} \,, \varepsilon^p_v \,, r^c_k \Big)$ dans chaque plan déviateur k , dont l'expression est donnée en [éq 1.1.2-12]

Remarque:

La formulation par plans orthogonaux du modèle de Hujeux ne permet pas de représenter correctement des états axisymétriques ; cf. [bib9] .

1.1.1.2 Énergie libre

On note l'énergie libre par la somme d'une contribution élastique et d'une contribution d'écrouissage :

$$\mathcal{F}\left(\mathbf{\varepsilon}(\vec{u}), \mathbf{\varepsilon}^{\mathbf{p}}, r_{k}^{K}\right) = \mathcal{F}_{\acute{e}l}\left(\mathbf{\varepsilon}(\vec{u}), \mathbf{\varepsilon}^{\mathbf{p}}\right) + \mathcal{H}_{\acute{e}cr}\left(\mathbf{\varepsilon}_{\mathbf{v}}^{\mathbf{p}}, r_{k}^{K}\right)$$
 éq 1.1.1-7

pour K = m, c; k = 1, ..., 4. La dissipation thermodynamique est obtenue par différence à partir de la densité de puissance de déformation, ceci dans un processus isotherme :

$$\mathcal{D}\!=\!\boldsymbol{\sigma}\,.\,\boldsymbol{\epsilon}\!\left(\boldsymbol{\dot{\vec{u}}}\right)\!-\!\dot{\mathcal{F}}\!\left(\boldsymbol{\epsilon}\!\left(\boldsymbol{\ddot{u}}\right),\,\boldsymbol{\epsilon}^{p}\,,\boldsymbol{r}_{k}^{K}\right)\!=\!\boldsymbol{\sigma}\,.\,\dot{\boldsymbol{\epsilon}}^{p}\!-\!\dot{\mathcal{H}}_{\acute{e}cr}\!\left(\boldsymbol{\epsilon}_{v}^{p}\,,\boldsymbol{r}_{k}^{K}\right)$$
 éq 1.1.1-8

Dans la mesure où l'on ne résout pas le couplage thermique, on ne peut différencier la densité de puissance dissipée du taux d'énergie d'écrouissage, correspondant à un terme d'énergie bloquée. Cependant $\sigma \cdot \dot{\boldsymbol{\xi}}^p$ n'est pas nécessairement positive, contrairement à \mathcal{D} . Comme on va le voir ciaprès, la part élastique de la loi de Hujeux est non linéaire : on ne peut facilement extraire l'expression du potentiel $\;\mathcal{F}_{\acute{e}l}\!\left(\mathbf{\epsilon}\!\left(\vec{u}
ight)$, $\mathbf{\epsilon}^{\,p}\!\right)$.

Comme la loi de comportement de Hujeux possède une élasticité non linéaire particulière, cf. [§ 1.1.1.3], on ne peut donner l'expression intégrée de l'énergie libre.

1.1.1.3 Loi élastoplastique non linéaire de Hujeux

On admet que le module de Young du sol dépend de la pression de confinement $p(\sigma)$ par une loi puissance, dans le domaine des compressions $p(\sigma) < 0$. La relation de comportement élastoplastique non linéaire de Hujeux s'écrit :

$$\mathbf{\sigma} = \frac{\partial}{\partial \mathbf{\varepsilon}} \mathbf{F}_{el}(\mathbf{\varepsilon}(\vec{u}), \mathbf{\varepsilon}^p) = \mathbf{C}(p) \cdot (\mathbf{\varepsilon}(\vec{u}) - \mathbf{\varepsilon}^p)$$
 éq 1.1.1-9

où le tenseur d'élasticité $\mathbb{C}(p)$ est isotrope.

En pratique, on ne peut exprimer la relation [éq 1.1.1.9] sous forme analytique, et on l'identifie sous forme incrémentale (hypoélastique) la relation entre la déformation volumique élastique et la pression de confinement :

$$\dot{p} = \frac{K_0}{1 - n} \cdot \left| \frac{p(\mathbf{\sigma})}{P_{r\acute{e}f}} \right|^n \cdot \text{tr} \left(\dot{\mathbf{\epsilon}} - \dot{\mathbf{\epsilon}}^p \right)$$
 éq 1.1.1-10

où l'on définit deux paramètres : $n \in [0, 1[$ et $P_{r \not e f}$ (non nulle), ainsi que les modules initiaux E_0 et $\,v_0\,$ (ou, selon la pratique en mécanique des sols, les modules positifs de cisaillement $\,G_0\,$ et de

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 7/67 Clé : R7.01.23 Révision

c173ed655b50

compressibilité K_0 initiaux mesurés à la pression de confinement de référence $P_{r\not\in f}$) qui définissent le tenseur d'élasticité initial \mathbb{C}^0 . Le cas $n\!=\!0$ correspond à l'élasticité linéaire.

Les composantes du tenseur d'élasticité de la loi élastique non linéaire s'écrivent donc :

$$C_{ijkl}(p) = C_{ijkl}^{0} \cdot \left| \frac{p(\mathbf{\sigma})}{P_{r\acute{e}f}} \right|^{n} = G_{0} \cdot \left(\delta_{ik} \, \delta_{j\ell} + \delta_{jk} \, \delta_{i\ell} + \frac{2 \, v_{0}}{1 - 2 \, v_{0}} \delta_{ij} \, \delta_{k\ell} \right) \cdot \left| \frac{p(\mathbf{\sigma})}{P_{r\acute{e}f}} \right|^{n} \qquad \qquad \text{eq 1.1.1-11}$$

On notera par la suite le coefficient de compressibilité :

$$K(p) = K_0 \cdot \left| \frac{p(\mathbf{\sigma})}{P_{r\acute{e}f}} \right|^n$$
 éq 1.1.1-12

On constate que la loi élastique n'est pas dérivable si la pression de confinement est nulle (et si $n \neq 0$). En pratique, cette loi conduit à une plus grande rigidité du sol au fur et à mesure que l'on descend en profondeur.

Les critères (ou surfaces de charge plastique) font intervenir la fonction de pression critique, qui caractérise la résistance du sol, dépendant de l'indice des vides dans le matériau (écrouissage en densité) :

$$P_c(\varepsilon_v^p) = P_{c0} \cdot e^{-\beta \varepsilon_v^p}$$
 éq 1.1.1-13

où interviennent deux paramètres matériau : pression critique de référence initiale $P_{c\theta}$ (négative) et β la compressibilité plastique du matériau (positif). La pression critique croît en valeur absolue lorsque le matériau a subi une déformation plastique volumique négative (compression).

1.1.2 Mécanismes élastoplastiques déviatoires

On considère trois mécanismes déviatoires : un dans chaque plan de glissement k (de normale \mathbf{e}_k ; de plus on identifie un comportement valable durant les trajets de charge monotone locale, et un autre comportement, contrôlé par une variable mémoratrice d'histoire, sur les trajets de chargement cyclique (dès la décharge à partir de l'état atteint à la fin d'un trajet monotone).

1.1.2.1 Critères déviatoires en chargement monotone

Les mécanismes déviatoriques dans le plan $(\mathbf{e}_{ik},\mathbf{e}_{jk})$ pour un trajet monotone sont régis par le critère :

$$\mathbf{f}_{\mathbf{k}}^{\mathbf{m}}\!\left(\mathbf{\sigma},\mathbf{\epsilon}_{\mathbf{v}}^{p},\!r_{k}^{m}\right)\!=\!q_{k}\!\left(\mathbf{\sigma}\right)\!+\!p_{k}\!\left(\mathbf{\sigma}\right).\;\mathbf{F}\!\left(p_{k}\!\left(\mathbf{\sigma}\right),\mathbf{\epsilon}_{\mathbf{v}}^{p}\right).\left(r_{k}^{m}\!+\!r_{\acute{e}la}^{d}\right)\;\leq\;0$$
 éq 1.1.2-1

avec:

$$p_{\it k}({\bf \sigma})~{\rm et}~q_{\it k}({\bf \sigma})~{\rm définis}~{\rm en}$$
 [éq 1.1.1-5], [éq 1.1.1-6] et [éq 7-2] ;

et la fonction qui caractérise la résistance du sol fonction de la déformation plastique volumique :

$$\mathbf{F} \Big(\left. p_k(\mathbf{\sigma}) \right. , \mathbf{\varepsilon}_v^p \Big) = M \cdot \left(1 - b_h \ln \left| \frac{p_k(\mathbf{\sigma})}{P_c \left(\mathbf{\varepsilon}_v^p \right)} \right| \right) \\ \Rightarrow \left. \frac{\partial F}{\partial p_k} = -\frac{b_h M}{p_k} \right. ; \left. \frac{\partial F}{\partial \mathbf{\varepsilon}_v^p} = -b_h \beta M \right.$$

où interviennent trois autres paramètres matériau : $M = \sin \phi_{pp}$ (ϕ_{pp} est l'angle de frottement interne), le coefficient positif b_h et le paramètre $r_{\acute{e}la}^d \in]0,1$ [qui caractérise la taille du seuil à l'état initial) ; la pression critique $P_c(\varepsilon_v^p)$ est définie par [éq 1.1.1-13].

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 8/67 Clé : R7.01.23 Révision

c173ed655b50

Le critère [éq 1.1.2-1] s'inspire fortement du modèle Cam-Clay [bib8] original. Néanmoins, l'expression a été modifiée par Hujeux [bib4], car ce modèle sous-estimait les déformations déviatoires pour des argiles sur-consolidées. Pour corriger cette faiblesse, il a modifié la surface de charge en introduisant une dépendance en fonction des déformations déviatoires sans modifier la règle d'écoulement volumique de dilatance de Roscoe [bib7], cf. [§ 1.1.2.2]. Par rapport à Cam-Clay, le modèle de Hujeux permet de mieux modéliser les cycles.

La [fig. 1.1-a] visualise l'effet de la pression critique $P_c(\epsilon_v^p)$ et du facteur de mobilisation r_k^m sur le seuil positionné par rapport à la droite d'état critique (angle ϕ_{pp}) et à la droite de dilatance (angle ψ , cf. [éq 1.1.2.3]).

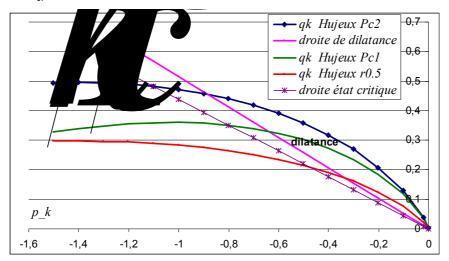


Figure 1.1-a : Surfaces de charge déviatoires (dans le plan des contraintes $\ p_k(\mathbf{\sigma})$, $\ q_k(\mathbf{\sigma})$).

Remarque:

On peut reformuler le critère monotone [éq 1.1.2-1] en normalisant la contrainte équivalente $q_k(\mathbf{\sigma})$ par $p_k(\mathbf{\sigma})$. $\mathbf{F}\left(p_k(\mathbf{\sigma}), \mathbf{\epsilon}_v^p\right)$, de telle manière que l'on puisse interpréter géométriquement le critère par un cercle de rayon $r_k^m + r_{\acute{e}la}^d$: $\mathbf{\tilde{f}}_k^m(\mathbf{\sigma}, \mathbf{\epsilon}_v^p, r_k^m) = \mathbf{\tilde{q}}_k(\mathbf{\sigma}, \mathbf{\epsilon}_v^p) - \left(r_k^m + r_{\acute{e}la}^d\right) \leq 0$, cf. [fig. 1.1-b].

Le critère [éq 1.1.2-1] nécessite la présence d'un état initial de consolidation $p_k(\mathbf{\sigma}) \neq 0$ dans le matériau pour que le seuil ne soit pas nul.

Remarque:

On nomme liquéfaction du sol la situation qui advient lorsque la pression effective de consolidation du sol est proche de zéro. Cet état peut intervenir après un chargement cyclique par exemple pour des sables lâches, mais également pour un chargement monotone, sur un sable lâche en conditions non drainées.

1.1.2.2 Lois d'écoulement et d'écrouissage en chargement monotone pour les mécanismes déviatoires

La première partie des vitesses de déformations plastiques pour le mécanisme déviatoire se décompose en une part purement déviatorique, respectant une loi d'écoulement associée (écoulement normal), et une part sphérique, non associée, respectant les principes de la loi de dilatance de Roscoe [bib7]. Il s'agit d'un « matériau standard non généralisé ». La loi d'écoulement s'écrit ainsi :

Responsable: M'JAHAD Sofia

c173ed655b50

$$\left(\dot{\mathbf{z}}^{p}\right)_{(k)}^{m} = \dot{\lambda}_{k}^{m} \cdot \mathbf{\Psi}_{(k)}^{m} = \dot{\lambda}_{k}^{m} \cdot \left(\frac{\mathbf{S}_{(k)}}{2\mathbf{q}_{k}} - \frac{\zeta_{0} \cdot \zeta\left(r_{k}^{m} + r_{\acute{e}la}^{d}\right)}{2} \cdot \left(\sin\psi + \frac{q_{k}}{p_{k}}\right) \cdot \mathbf{I}_{(k)}\right)$$
 éq 1.1.2-3

Le tenseur $\Psi^m_{(k)}$ désigne la direction d'écoulement. L'angle de dilatance ψ et ζ_0 sont des paramètres matériau. La fonction $\zeta(r)$ permet de contrôler l'effet de la variation de volume lors d'un écoulement plastique sur un mécanisme déviatoire (écoulement qui est alors *non standard*). Jusqu'à un certain niveau de cisaillement, la variation de volume est nulle ; au-delà elle intervient. La fonction $\zeta(r)$ a pour expression :

$$\zeta(r) = \begin{pmatrix} 0 & si \ r \leq r_{hys} & domaine \ pseudo-\'elastique \\ \frac{r - r_{hys}}{r_{mob} - r_{hys}} \end{pmatrix}^{x_m} & si \ r_{hys} < r \leq r_{mob} & domaine \ hyst\'er\'etique \\ 1 & si \ r > r_{mob} & domaine \ plastique \end{pmatrix}$$
 éq 1.1.2-4

où r_{hvs} , r_{mob} , x_m sont de nouveaux paramètres des mécanismes déviatoires.

On nomme état caractéristique la situation correspondant à des évolutions où $\dot{\varepsilon}^p_v = 0$ (évolution nulle de la contractance). Dans le modèle Cam Clay, cf. 5). cette évolution nulle de la contractance, suivie d'une phase de dilatance où $\dot{\varepsilon}^p_v = \dot{\varepsilon}^p$. I > 0, produit l'arrêt de l'écrouissage positif du matériau, mais ce n'est pas le cas du modèle de Hujeux, pour lequel l'écrouissage négatif – la résistance diminue, cf. [éq 1.1.2-2] – advient ultérieurement.

La loi d'évolution suivie par la variable interne d'écrouissage r_k^m (facteur de mobilisation monotone) est régie par les mêmes multiplicateurs plastiques $\dot{\lambda}_k^m$ que sur $(\dot{\boldsymbol{\epsilon}}^p)_{(k)}^m$:

$$\dot{r}_{k}^{m} = \dot{\lambda}_{k}^{m} \cdot \rho_{k}^{m} = \dot{\lambda}_{k}^{m} \frac{\left(1 - r_{k}^{m} - r_{\dot{e}la}^{d}\right)^{2}}{a_{c} + \zeta \left(r_{k}^{m} + r_{\dot{e}la}^{d}\right) \cdot \left(a_{m} - a_{c}\right)} \tag{eq 1.1.2-5}$$

où a_m , a_c sont de nouveaux paramètres (strictement positifs) des mécanismes déviatoires. On doit toujours avoir $\dot{r}_k^m \ge 0$; de plus, [éq 1.1.2-5] impose que $r_k^m + r_{\acute{e}la}^d \le 1$. L'écrouissage est positif en phase pré-pic et négatif en phase post-pic.

Les multiplicateurs plastiques $\dot{\lambda}_k^m$, qui doivent être positifs, sont obtenus par résolution de l'équation de « complémentarité » de Kühn-Tücker, conjointement à la condition de « cohérence » :

$$\dot{\lambda}_k^m \cdot f_k^m \left(\sigma, \varepsilon_v^p, r_k^m \right) = 0$$
 et $\dot{f}_k^m \left(\sigma, \varepsilon_v^p, r_k^m \right) = 0 = f_{k,\sigma}^m \cdot \dot{\sigma} + f_{k,\varepsilon^p}^m \cdot \dot{\varepsilon}_v^p + f_{k,r_k^m}^m \cdot \dot{r}_k^m$ éq 1.1.2-6

d'où, en combinant avec [éq 1.1.1-9], dans le cas où seul ce mécanisme monotone k est activé :

$$\dot{\lambda}_{k}^{m} = -\frac{\mathbf{f}_{k,\sigma}^{m} \cdot \dot{\boldsymbol{\sigma}}}{\mathbf{f}_{k,\varepsilon_{v}^{p}}^{m} \cdot \boldsymbol{\Psi}_{(k)}^{m} \cdot \mathbf{I} + f_{k,r_{k}^{m}}^{m} \cdot \rho_{k}^{m}} = \frac{\langle \mathbf{f}_{k,\sigma}^{m} \cdot \mathbf{C} \cdot \dot{\boldsymbol{\epsilon}} \rangle_{+}}{\mathbf{f}_{k,\sigma}^{m} \cdot \mathbf{C} \cdot \boldsymbol{\Psi}_{(k)}^{m} - \mathbf{f}_{k,\varepsilon_{v}^{p}}^{m} \cdot \boldsymbol{\Psi}_{(k)}^{m} \cdot \mathbf{I} - \mathbf{f}_{k,r_{k}^{m}}^{m} \cdot \rho_{k}^{m}}$$
 éq 1.1.2-7

et dans le cas général, il faut tenir compte de la contribution de tous les mécanismes actifs sur l'écoulement plastique $\dot{\epsilon}^p$, cf. [éq 1.1.5-1] :

Titre : Loi de comportement cyclique de Hujeux pour les so[...]
Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 10/67 Clé : R7.01.23 Révision

Révision c173ed655b50

$$\dot{\boldsymbol{\lambda}}_{k}^{m} = -\frac{\mathbf{f}_{k,\sigma}^{m} \cdot \dot{\boldsymbol{\sigma}} + \mathbf{f}_{k,\varepsilon_{v}^{p}}^{m} \cdot \left(\sum_{(K,t)\neq(m,k)} \dot{\boldsymbol{\lambda}}_{t}^{K} \boldsymbol{\Psi}_{(t)}^{K} \cdot \mathbf{I}\right)}{\mathbf{f}_{k,\varepsilon_{v}^{p}}^{m} \cdot \mathbf{I} + \mathbf{f}_{k,\varepsilon_{v}^{m}}^{m} \cdot \boldsymbol{\rho}_{k}^{m}} = \frac{\left\langle \mathbf{f}_{k,\sigma}^{m} \cdot \mathbf{C} \cdot \dot{\boldsymbol{\epsilon}} + \left(\sum_{(K,t)\neq(m,k)} \dot{\boldsymbol{\lambda}}_{t}^{K} \boldsymbol{\Psi}_{(t)}^{K}\right) \cdot \left(\mathbf{f}_{k,\sigma}^{m} \cdot \mathbf{C} - \mathbf{f}_{k,\varepsilon_{v}^{p}}^{m} \cdot \mathbf{I}\right)\right\rangle_{+}}{\mathbf{f}_{k,\sigma}^{m} \cdot \mathbf{C} \cdot \boldsymbol{\Psi}_{(k)}^{m} - \mathbf{f}_{k,\varepsilon_{v}^{p}}^{m} \cdot \boldsymbol{\Psi}_{(k)}^{m} \cdot \mathbf{I} - \mathbf{f}_{k,\varepsilon_{v}^{m}}^{m} \cdot \boldsymbol{\rho}_{k}^{m}}$$

éa 1.1.2-8

Les divers termes apparaissant ici sont calculés en [éq 7-13], [éq 7-14], [éq 7-15]. L'expression [éq 1.1.2-8] contribue au calcul de l'accroissement des contraintes $\dot{\sigma}$ d'où l'on tire l'opérateur tangent, cf. [§ 2].

1.1.2.3 Critères déviatoires en chargement cyclique

Quand les mécanismes cycliques interviennent alors les mécanismes monotones sont « figés », c'està-dire les variables internes associées restent constantes. Un mécanisme déviatorique cyclique « fils » s'enclenche lorsqu'une décharge advient sur un mécanisme monotone « père » précédemment activé, et que l'on viole le critère de ce mécanisme cyclique sur l'état actuel à l'instant t. La condition s'écrit ainsi :

$$\mathbf{f}_{\mathbf{k},\sigma}^{\mathbf{m}}\left(\boldsymbol{\sigma}\left(t\right),\boldsymbol{\varepsilon}_{v}^{p}\left(t\right),\boldsymbol{r}_{k}^{m}\left(t\right)\right).\mathbf{C}\left(\frac{p\left(\boldsymbol{\sigma}\right)}{P_{r\acute{e}f}}\right).\ \dot{\boldsymbol{\varepsilon}}\left(t\right)\ <\ 0\qquad \text{et}\quad \mathbf{f}_{\mathbf{k}}^{\mathbf{c}}\left(\boldsymbol{\sigma}\left(t\right),\boldsymbol{\varepsilon}_{v}^{p}\left(t\right),\boldsymbol{r}_{k}^{c}\left(t\right)\right)\ >\ 0\qquad \qquad \acute{\mathbf{eq}}\ \mathbf{1.1.2-9a}$$

Cela peut aussi advenir entre deux mécanismes cycliques, « père » et « fils », lorsqu'un changement de direction intervient, cf. [fig. 1.1-b] :

$$\mathbf{f}_{\mathbf{k},\sigma}^{cl}\!\left(\boldsymbol{\sigma}(t)\,,\boldsymbol{\varepsilon}_{v}^{p}(t)\,,\boldsymbol{r}_{k}^{cl}(t)\right).\mathbf{C}\!\left(\frac{p\left(\boldsymbol{\sigma}\right)}{P_{r\!\acute{e}\!f}}\right).\,\,\dot{\boldsymbol{\varepsilon}}(t)\;<\;0\qquad\text{et}\quad\mathbf{f}_{\mathbf{k}}^{c2}\!\left(\boldsymbol{\sigma}(t)\,,\boldsymbol{\varepsilon}_{v}^{p}(t)\,,\boldsymbol{r}_{k}^{c2}(t)\right)\;>\;0\quad\text{\'eq 1.1.2-9b}$$

Un critère de proximité relative est cependant introduit afin de laisser actif le mécanisme « père », au détriment du mécanisme « fils ».

En cas de micro-décharge sur un trajet de contrainte, suivie d'une remontée en charge, le mécanisme « fils » est désactivé au profit du mécanisme « père », afin de reprendre la valeur du module d'écrouissage de ce dernier plutôt que de parcourir un trajet de pente élastique, qui serait physiquement contestable, ce qui est traité au niveau de l'intégration numérique, cf. [§ 2.2.3.1], point d) vii. 1.a.

Il peut aussi advenir qu'un mécanisme monotone « succède » à un mécanisme cyclique, lorsque sa surface de charge atteint celle du mécanisme monotone, cf. [fig. 1.1-b].

La description précise de l'enchaînement des mécanismes monotones et cycliques avec les enregistrement des variables mémoratrices discrètes et les éventuelles restaurations des variables d'écrouissage est un élément constitutif du modèle de Hujeux : elle est présentée en détail au [§2.2.3.1].

La surface de charge de chaque mécanisme cyclique est une formulation générale commune aux trois plans déviatoires considérés. Les critères déviatoriques cycliques s'écrivent :

$$\mathbf{f}_{k}^{c}(\mathbf{\sigma}, \mathbf{\epsilon}_{v}^{p}, r_{k}^{c}) = q_{k}^{c}(\mathbf{\sigma}, \mathbf{\epsilon}_{v}^{p}, r_{k}^{c}) + p_{k}(\mathbf{\sigma}) \cdot \mathbf{F}(p_{k}(\mathbf{\sigma}), \mathbf{\epsilon}_{v}^{p}) \cdot (r_{k}^{c} + r_{\ell da}^{dc}) \leq 0 \qquad \qquad \text{\'eq 1.1.2-10}$$

où $q_k^c(\mathbf{\sigma}$, $\mathbf{\epsilon}_v^p$, $r_k^c)$ est une variante pour les mécanismes cycliques de $q_k(\mathbf{\sigma})$:

$$q_{k}^{c}(\boldsymbol{\sigma}, \boldsymbol{\varepsilon}_{v}^{p}, r_{k}^{c}) = \left\| \mathbf{S}_{(k)}^{c}(\boldsymbol{\sigma}, \boldsymbol{\varepsilon}_{v}^{p}, r_{k}^{c}) \right\|_{VM}^{2D}$$
 éq 1.1.2-11

avec:

Responsable : M'JAHAD Sofia Clé : R7.01.23 Révision

c173ed655b50

Date: 22/11/2019 Page: 11/67

$$\mathbf{S}_{(k)}^{c}\!\!\left(\mathbf{\sigma}\,,\boldsymbol{\varepsilon}_{v}^{p},\!r_{k}^{c}\right)\!\!=\!\!\mathbf{S}_{(k)}\!\!\left(\mathbf{\sigma}\right)\!-p_{k}\!\left(\mathbf{\sigma}\right).F\!\left(p_{k}\!\left(\mathbf{\sigma}\right),\boldsymbol{\varepsilon}_{v}^{p}\right).\left[\mathbf{X}_{(k)}^{H}\!\!+\!\!\frac{\mathbf{S}_{(k)H}^{c}}{\left\|\mathbf{S}_{(k)H}^{c}\right\|_{V\!M}^{2\mathrm{D}}}.\left(r_{k}^{c}\!+\!r_{\acute{e}la}^{dc}\right)\right]\quad\text{\'eq 1.1.2 -12}$$

La fonction $F\left(p_k(\mathbf{\sigma}), \epsilon_v^p\right)$ est la même que celle définie en [éq 1.1.2-2]. Le paramètre $r_{\acute{e}la}^{dc} \in]0,1$ [a souvent la même valeur que $r_{\acute{e}la}^d$ pour le critère déviatoire en trajet monotone, cf. [§ 1.1.2.1].

Le tenseur $\mathbf{X}_{[k]}^H$ est une fonction des variables discontinues mémoratrices [§ 1.1.1], dans le plan du mécanisme considéré, nécessaire à la description de l'histoire de chacun des mécanismes déviatoires, définie initialement à partir du mécanisme monotone ; il permet de décrire le comportement cinématique de l'écrouissage. Les indices H font référence aux variables mémoratrices modifiées à chaque transition de mécanisme avec changement de sens des sollicitations. Son expression est :

$$\mathbf{X}_{(k)}^{H} = \frac{\mathbf{S}_{(k)H}}{p_{kH} \cdot \mathbf{F}\left(p_{kH}, \varepsilon_{vH}^{p}\right)}$$
 éq 1.1.2 -13

Remarque:

Comme $\mathbf{S}_{(k)}^c \cdot \mathbf{I} = 0$ et aussi $\mathbf{S}_{(k)}^c \cdot \mathbf{I}_{(k)} = 0$, c'est bien un tenseur déviatorique. On peut reformuler le critère cyclique [éq 1.1.2-9] en normalisant la contrainte équivalente q_k^c par $p_k(\mathbf{\sigma}) \cdot \mathbf{F} \left(p_k(\mathbf{\sigma}), \mathbf{\epsilon}_v^p \right)$, de telle manière que l'on puisse interpréter géométriquement le critère par un cercle de rayon $r_k^c + r_{ela}^d$:

$$\tilde{\mathbf{f}}_{k}^{c}(\boldsymbol{\sigma}, \mathbf{X}_{(k)}, \boldsymbol{\varepsilon}_{v}^{p}, r_{k}^{c}) = \tilde{q}_{k}^{c}(\boldsymbol{\sigma}, \mathbf{X}_{(k)}, \boldsymbol{\varepsilon}_{v}^{p}, r_{k}^{c}) - (r_{k}^{c} + r_{ela}^{dc}) \leq 0$$

Nota:

Quand on accède au premier chargement cyclique après un premier trajet monotone dans l'histoire donnée, on a : $\mathbf{X}_{(k)}^{H} = \frac{\mathbf{S}_{(k)H}}{p_{kH} \cdot \mathbf{F}\left(p_{kH}, \boldsymbol{\varepsilon}_{vH}^{p}\right)} , \quad \mathbf{S}_{(k)H}^{c} = \mathbf{S}_{(k)}(\boldsymbol{\sigma}) , \text{donc} : \\ \mathbf{S}_{(k)}^{c}\left(\boldsymbol{\sigma}, \boldsymbol{\varepsilon}_{v}^{p}, r_{k}^{c}\right) = -p_{k}(\boldsymbol{\sigma}) \cdot \mathbf{F}\left(p_{k}(\boldsymbol{\sigma}), \boldsymbol{\varepsilon}_{v}^{p}\right) \cdot \frac{\mathbf{S}_{(k)H}^{c}}{\left\|\mathbf{S}_{(k)H}^{c}\right\|_{\mathrm{TM}}^{2D}} \cdot \left(r_{k}^{c} + r_{éla}^{dc}\right) \text{ à l'initialisation du trajet}$

cvcliaue.

1.1.2.4 Lois d'écoulement et d'écrouissage en chargement cyclique

La contribution de ces mécanismes déviatoriques cycliques à la vitesse de déformation plastique a la même forme que pour le mécanisme monotone [éq 1.1.2-3] :

$$\left(\dot{\mathbf{\epsilon}}^{\,p} \right)_{(k)}^{\,c} = \dot{\lambda}_k^{\,c} \cdot \mathbf{\Psi}_{(k)}^{\,c} = \dot{\lambda}_k^{\,c} \cdot \left(\frac{\mathbf{S}_{(k)}^c}{2 \, q_k^c} - \frac{\zeta_0 \cdot \zeta \left(r_k^c + r_{ela}^{\,dc} \right)}{2} \cdot \left(\sin \psi + \frac{\mathbf{S}_{(k)} \cdot \mathbf{S}_{(k)}^c}{2 \, p_k \, q_k^c} \right) \cdot \mathbf{I}_{(k)} \right)$$
 éq 1.1.2-14

où $\mathbf{S}_{(k)}^c$ est défini par [éq 1.1.2-12] et la fonction $\zeta(r)$ définie par [éq 1.1.2-4]. Le tenseur $\Psi_{(k)}^c$ désigne la direction d'écoulement, qui est *non standard*.

La loi d'évolution associée aux variables d'écrouissage r_k^c est identique à celle énoncée pour le facteur de mobilisation monotone r_k^m [éq 1.1.2-5] :

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 12/67 Clé : R7.01.23 Révision

c173ed655b50

$$\dot{r}_{k}^{c} = \dot{\lambda}_{k}^{c} \cdot \rho_{k}^{c} = \dot{\lambda}_{k}^{c} \frac{\left(1 - r_{k}^{c} - r_{ela}^{dc}\right)^{2}}{a_{c} + \zeta \left(r_{k}^{c} + r_{ela}^{dc}\right) \cdot \left(a_{m} - a_{c}\right)} \cdot \gamma_{k}^{c}$$

$$q_{k}^{c} = \frac{2q_{k}^{c} \cdot ||\mathbf{S}_{(\mathbf{k})\mathbf{H}}^{c}||_{VM}^{2D}}{2q_{k}^{c} \cdot ||\mathbf{S}_{(\mathbf{k})\mathbf{H}}^{c}||_{VM}^{2D} - \mathbf{S}_{(\mathbf{k})\mathbf{H}}^{c} \cdot \mathbf{S}_{(\mathbf{k})}^{c}}$$

$$(\mathbf{q}_{k}^{c} - \mathbf{q}_{k}^{c}) \cdot ||\mathbf{q}_{k}^{c} - \mathbf{q}_{k}^{c} - \mathbf{q}_{k}^{c})||\mathbf{q}_{k}^{c} - \mathbf{q}_{k}^{c} - \mathbf$$

avec:

Nota:

Le dernier facteur apparaissant au dénominateur de [éq 1.1.2 -15] n'est pas noté dans les références [bib3], [bib4], mais est présent dans le logiciel Gefdyn ; ce facteur permet que les prédictions soient plus proches des résultats expérimentaux . Le dénominateur dans γ_k^c ne doit pas en pratique être nul ($\mathbf{S}_{(k)}^c$ n'étant pas identique à $\mathbf{S}_{(k)H}^c$); cependant avant convergence des itérations, si cela se produit, on fait simplement $\gamma_k^c=1$, comme dans le cas monotone, cf. [éq 1.1.2 -5] . Ce choix de γ_k^c permet d'obtenir l'égalité des modules plastiques $\mathbf{f}_{k,r_k^c}^c \cdot \rho_k^c = \mathbf{f}_{k,r_k^m}^m \cdot \rho_k^m$, conformément à l'observation expérimentale . On doit toujours avoir $\dot{r}_k^c \geq 0$, de plus, [éq 1.1.2 -15] impose que $r_k^c + r_{ela}^{dc} \leq 1$.

Les multiplicateurs plastiques $\dot{\lambda}_k^c$, qui doivent être positifs, sont obtenus par résolution de l'équation de complémentarité de Kühn-Tücker, conjointement à la condition de cohérence :

$$\dot{\lambda}_k^c$$
, $f_k^c(\sigma, \varepsilon_v^p, r_k^c) = 0$ et $\dot{f}_k^c(\sigma, \varepsilon_v^p, r_k^c) = 0$ éq 1.1.2-16

d'où, en combinant avec [éq 1.1.1-9], dans le cas où seul ce mécanisme est activé :

$$\dot{\lambda}_{k}^{c} = -\frac{\mathbf{f}_{k,\sigma}^{c}.\dot{\mathbf{\sigma}}}{\mathbf{f}_{k,\varepsilon_{v}^{p}}^{c}.\mathbf{Y}_{(k)}^{c}.\mathbf{I} + \mathbf{f}_{k,r_{k}^{c}}^{c}.\rho_{k}^{c}} = \frac{\langle \mathbf{f}_{k,\sigma}^{c}.\mathbf{C}.\dot{\mathbf{t}}\rangle_{+}}{\mathbf{f}_{k,\sigma}^{c}.\mathbf{C}.\mathbf{Y}_{(k)}^{c} - f_{k,\varepsilon_{v}^{p}}^{c}.\mathbf{Y}_{(k)}^{c}.\mathbf{I} - \mathbf{f}_{k,r_{k}^{c}}^{c}.\rho_{k}^{c}} \qquad \qquad \text{eq 1.1.2-17}$$

et dans le cas général, il faut tenir compte de la contribution de tous les mécanismes actifs sur l'écoulement plastique $\hat{\epsilon^p}$, cf. [éq 1.1.5-1] :

$$\dot{\boldsymbol{\lambda}}_{k}^{c} = -\frac{\boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{\dot{\sigma}} + \boldsymbol{f}_{k,\varepsilon_{v}^{p}}^{c}.\left(\sum_{(K,t)\neq(c,k)}\dot{\boldsymbol{\lambda}}_{t}^{K}\boldsymbol{\Psi}_{(t)}^{K}.\boldsymbol{I}\right)}{\boldsymbol{f}_{k,\varepsilon_{v}^{p}}^{c}.\boldsymbol{\Psi}_{(k)}^{c}.\boldsymbol{I} + \boldsymbol{f}_{k,r_{k}^{c}}^{c}.\boldsymbol{\rho}_{k}^{c}} = \frac{\left\langle \boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{C}.\boldsymbol{\dot{\epsilon}} + \left(\sum_{(K,t)\neq(c,k)}\dot{\boldsymbol{\lambda}}_{t}^{K}\boldsymbol{\Psi}_{(t)}^{K}\right).\left(\boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{C} - \boldsymbol{f}_{k,\varepsilon_{v}^{p}}^{c}.\boldsymbol{I}\right)\right\rangle_{+}}{\boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{C}.\boldsymbol{\Psi}_{(k)}^{c} - \boldsymbol{f}_{k,\varepsilon_{v}^{p}}^{c}.\boldsymbol{\Psi}_{(k)}^{c}.\boldsymbol{I} - \boldsymbol{f}_{k,r_{k}^{c}}^{c}.\boldsymbol{\rho}_{k}^{c}} = \frac{\left\langle \boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{C}.\boldsymbol{\Psi}_{(k)}^{c} - \boldsymbol{C}.\boldsymbol{\dot{\epsilon}} + \left(\sum_{(K,t)\neq(c,k)}\dot{\boldsymbol{\lambda}}_{t}^{K}\boldsymbol{\Psi}_{(t)}^{K}\right).\left(\boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{C} - \boldsymbol{f}_{k,\varepsilon_{v}^{p}}^{c}.\boldsymbol{I}\right)\right\rangle_{+}}{\boldsymbol{f}_{k,\sigma}^{c}.\boldsymbol{C}.\boldsymbol{\Psi}_{(k)}^{c} - \boldsymbol{f}_{k,\varepsilon_{v}^{p}}^{c}.\boldsymbol{\Psi}_{(k)}^{c}.\boldsymbol{I} - \boldsymbol{f}_{k,\varepsilon_{v}^{c}}^{c}.\boldsymbol{\rho}_{k}^{c}}$$

Les divers termes apparaissant ici sont calculés en [éq 7-16], [éq 7-17], [éq 7-18]. L'expression [éq 1.1.2-18] contribue au calcul de l'accroissement des contraintes $\dot{\sigma}$, d'où l'on tire l'opérateur tangent, cf. [§ 2].

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 13/67 Clé : R7.01.23 Révision

c173ed655b50

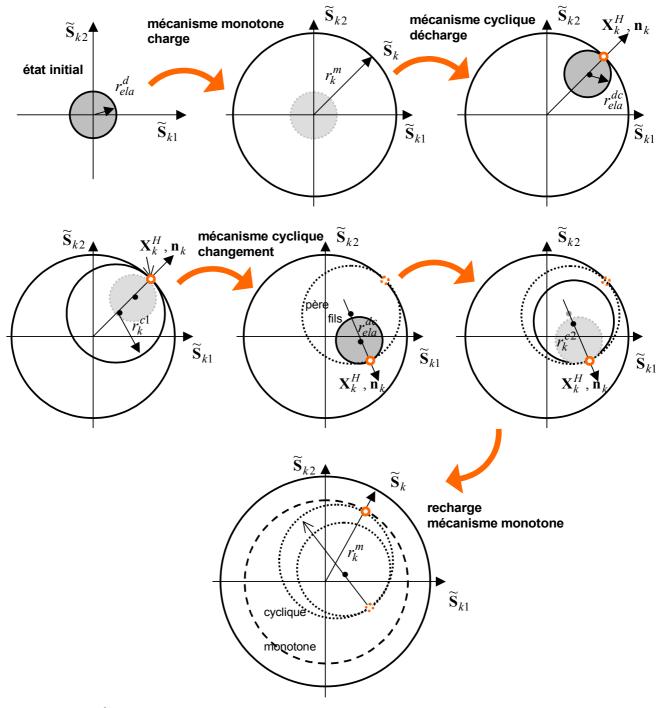


Figure 1.1-b : Évolution des surfaces de charge déviatoires pour un trajet de chargement quelconque (dans le plan des contraintes normalisées par $p_k(\sigma)$, $F(p_k(\sigma), \varepsilon_v^p)$). Les points du trajet marqués d'un petit rond indiquent les lieux des changements de mécanismes.

Clé: R7.01.23 Révision Responsable: M'JAHAD Sofia

c173ed655b50

Date: 22/11/2019 Page: 14/67

1.1.3 Mécanismes élastoplastiques de consolidation sphériques

Sur des chemins de consolidation (contraintes sphériques), les différents mécanismes déviatoires ne participent pas. Or, les géomatériaux présentent une forte non-linéarité pour ce type de chargements. On identifie donc, dans le domaine des compressions $p(\mathbf{\sigma})<0$, un comportement de consolidation valable durant les trajets de charge monotone locale, et un autre comportement de consolidation, contrôlé par une variable d'histoire en trajet de chargement cyclique (dès la décharge à partir d'un trajet monotone). Ils agissent sur le comportement volumique du matériau donc sur les termes sphériques des tenseurs. Ces mécanismes sont couplés aux mécanismes déviatoires pour tenir compte du phénomène d'écrouissage en densité lié au comportement déviatoire du matériau.

1.1.3.1 Critère de consolidation en chargement monotone

Le mécanisme de consolidation pour un trajet monotone est régi par le critère :

$$\mathbf{f}_{4}^{\mathit{m}}\!\left(\mathbf{\sigma}\,,\,\,\mathbf{\epsilon}_{\mathit{v}}^{\mathit{p}}\,,\,\,r_{4}^{\mathit{m}}\right)\!=\!\!\left|\,p\left(\mathbf{\sigma}\right)\,\right|\!+\!d\,\,.\,P_{\mathit{c0}}\,.\,\,e^{-\beta\,\mathbf{\epsilon}_{\mathit{v}}^{\mathit{p}}}.\!\left(r_{4}^{\mathit{m}}\!+\!r_{\mathit{\'e}la}^{\mathit{s}}\right)\,\,\leq\,\,0$$
 éq 1.1.3-1

où interviennent deux nouveaux paramètres matériau : d (positif), distance entre la droite d'état critique et la droite de consolidation isotrope, dans le plan $|\ln|p|$, ϵ_v^p , et $r_{\ell a}^s$, cf. [fig. 1.1-c]. Le paramètre $r_{\rho la}^s \in]0,1[$ caractérise la taille du seuil à l'état initial.

Remarque:

On observe dans [éq 1.1.3 -1] que si l'on passe d'une phase contractante $\dot{\epsilon}_{v}^{p} < 0$ à une phase dilatante $\dot{\epsilon}_{v}^{p} \! > \! 0$, l'écrouissage passe d'un état positif à un état négatif (affaiblissement du seuil) : ce point de passage au cours de l'évolution constitue donc un point « délicat » pour l'intégration du modèle de Hujeux dans un calcul de structure.

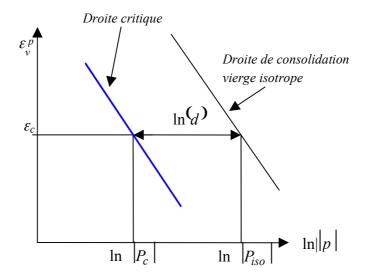


Figure 1.1-c : droite d'état critique et la droite de consolidation isotrope.

1.1.3.2 Lois d'écoulement et d'écrouissage en chargement monotone

Pour le mécanisme de consolidation, en respectant une loi d'écoulement associée, on définit une contribution aux vitesses de déformations plastiques :

$$\left(\dot{\mathbf{z}}^{p}\right)_{4}^{m} = \dot{\lambda}_{4}^{m} \cdot \Psi_{(4)}^{m} = \dot{\lambda}_{4}^{m} \cdot \frac{p}{3|p|} \cdot \mathbf{I} = \frac{1}{3}\dot{\lambda}_{4}^{m} \cdot \operatorname{sgn}(p) \cdot \mathbf{I}$$
 éq 1.1.3-2

Responsable : M'JAHAD Sofia Clé : R7.01.23 Révision

c173ed655b50

Date: 22/11/2019 Page: 15/67

où $\dot{\lambda}_4^m$ désigne le multiplicateur plastique sphérique monotone, qui doit être positif. On notera : $sgn(p) = \frac{p}{|p|}$. En pratique, $\dot{\lambda}_4^m \cdot p \leq 0$.

La loi d'évolution suivie par la variable d'écrouissage r_4^m (facteur de mobilisation) est pilotée par le même multiplicateur plastique $\dot{\lambda}_4^m$:

$$\dot{r}_{4}^{m} = \dot{\lambda}_{4}^{m} \, \rho_{4}^{m} = \dot{\lambda}_{4}^{m} \frac{\left(1 - r_{4}^{m} - r_{\acute{e}la}^{s}\right)^{2}}{c_{m}} \frac{P_{r\acute{e}f}}{P_{c}\left(\varepsilon_{v}^{p}\right)} \tag{eq 1.1.3-3}$$

où c_m est un paramètre (strictement positif) du mécanisme de consolidation monotone. $P_{r\!e\!f}$ est la pression de confinement de référence et $P_c(\epsilon^p_v)$ la pression critique [éq 1.1.1-13]. On doit toujours avoir $\dot{r}_4^m \geq 0$, de plus, [éq 1.1.3-3] impose que $r_4^m + r_{\delta la}^s \leq 1$.

Le multiplicateur plastique $\dot{\lambda}_4^m$ est obtenu par résolution de l'équation de complémentarité de Kühn-Tücker, conjointement à la condition de « cohérence » :

$$\dot{\lambda}_4^m \cdot f_4^m \left(\mathbf{\sigma}, \, \mathbf{\epsilon}_{\nu}^p, \, r_4^m \right) = 0$$
 et $\dot{f}_4^m \left(\mathbf{\sigma}, \, \mathbf{\epsilon}_{\nu}^p, \, r_4^m \right) = 0 = f_{4, \mathbf{\sigma}}^m \cdot \dot{\mathbf{\sigma}} + f_{4, \mathbf{\epsilon}_{\nu}^p}^m \cdot \dot{\mathbf{\epsilon}}_{\nu}^p + f_{4, \mathbf{\epsilon}_{\mu}^m}^m \cdot \dot{r}_4^m$ éq 1.1.3-4

d'où, en combinant avec [éq 1.1.1-9], dans le cas où seul ce mécanisme est activé (nota : $\mathbf{C} \cdot \mathbf{I} = 3 \, K \cdot \mathbf{I}$, cf. [éq 6-25]) :

et dans le cas général, il faut tenir compte de la contribution de tous les mécanismes actifs sur l'écoulement plastique $\dot{\mathbf{\epsilon}}^p$, cf. [éq 1.1.5-1] :

$$\begin{split} \dot{\lambda}_{4}^{m} = & -\frac{\mathbf{f}_{4,\sigma}^{m}.\dot{\sigma} + \mathbf{f}_{4,\varepsilon_{v}^{p}}^{m}.\left(\sum_{(K,k)\neq(m,4)}\dot{\lambda}_{k}^{K}\mathbf{\Psi}_{(k)}^{K}.\mathbf{I}\right)}{\mathbf{f}_{4,\varepsilon_{v}^{p}}^{m}.\mathbf{\Psi}_{(4)}^{m}.\mathbf{I} + \mathbf{f}_{4,r_{4}^{m}}^{m}.\boldsymbol{\rho}_{4}^{m}} = \\ & \frac{\left\langle 3\mathbf{K}\left(p\right).\operatorname{sgn}\left(p\right).\operatorname{tr}\,\dot{\mathbf{\epsilon}} + \left(\sum_{(K,k)\neq(m,4)}\dot{\lambda}_{k}^{K}\mathbf{\Psi}_{(k)}^{K}.\mathbf{I}\right).\left(K\left(p\right).\operatorname{sgn}\left(p\right) - \mathbf{f}_{4,\varepsilon_{v}^{p}}^{m}\right)\right\rangle_{+}}{K\left(p\right) - \mathbf{f}_{4,\varepsilon_{v}^{p}}^{m}.\operatorname{sgn}\left(p\right) - \mathbf{f}_{4,r_{4}^{m}}^{m}.\boldsymbol{\rho}_{4}^{m}} \end{split}$$

Les divers termes apparaissant ici sont calculés en [éq 7-19], [éq 7-20], [éq 7-21]. L'expression [éq 1.1.3-5] contribue au calcul de l'accroissement des contraintes $\dot{\sigma}$, d'où l'on tire l'opérateur tangent, cf. [§ 2].

1.1.3.3 Critère de consolidation en chargement cyclique

Quand le mécanisme cyclique intervient alors le mécanisme monotone est « figé ». Le mécanisme de consolidation cyclique « fils » s'enclenche lorsque :

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 16/67 Clé: R7.01.23

Révision

c173ed655b50

$$\mathbf{f}_{4}^{m}\left(\mathbf{\sigma},\,\mathbf{\epsilon}_{v}^{p},\,r_{4}^{m}\right)=0 \quad ; \quad \mathbf{f}_{4,\mathbf{\sigma}}^{m}\left(\mathbf{\sigma}(t),\,\mathbf{\epsilon}_{v}^{p}(t),r_{4}^{m}(t)\right).\mathbf{C}\left(\frac{p(\mathbf{\sigma})}{P_{\mathit{r\acute{e}f}}}\right).\,\dot{\mathbf{\epsilon}}(t) < 0 \qquad \qquad \acute{\mathbf{e}}\mathbf{q}\,\mathbf{1.1.3-7}$$

Le critère de consolidation cyclique s'écrit de la même forme qu'en monotone [éq 1.1.3-1] :

$$\mathbf{f}_{4}^{c}\!\!\left(\mathbf{\sigma}\,,\,\mathbf{\epsilon}_{v}^{\,p},\,\,p_{H},\,\mathbf{\epsilon}_{vH}^{p},\,\,r_{4}^{c}\!\right)\!=\!\!|\,p^{c}\!\left(\mathbf{\sigma}\,,\,\,\mathbf{\epsilon}_{v}^{\,p},\,\,p_{H},\,\mathbf{\epsilon}_{vH}^{\,p}\right)|\!+\!d\,.\,P_{c0}\,.\,e^{-\beta\,\mathbf{\epsilon}_{v}^{\,p}}.\left(r_{4}^{c}\!+\!r_{\acute{e}la}^{sc}\right) \,\leq\,\,0\,\,\acute{\mathbf{e}}\mathbf{q}\,\,\mathbf{1.1.3-8}$$

où p^c désigne une variante de $p(\sigma)$ pour les mécanismes cycliques :

$$p^{c}(\sigma, \varepsilon_{v}^{p}, p_{H}, \varepsilon_{vH}^{p}) = |p(\sigma)| + p_{H} \cdot e^{-\beta(\varepsilon_{v}^{p} - \varepsilon_{vH}^{p})}$$
 éq 1.1.3-9

où p_H (variable mémoratrice) désigne la valeur atteinte par $\,p\,$ au début du trajet où le mécanisme cyclique s'enclenche, cf. [fig. 1.1-d] . Le paramètre $r_{\'ela}^{sc} \in]0,1[$, ayant souvent la même valeur que pour le critère monotone, caractérise la taille du seuil à l'état initial.

Remarque:

L'expression [éq 1.1.3-9] est celle choisie par l'ECP [bib3] aujourd'hui, tandis que Hujeux [bib4] avait proposé une formulation faisant intervenir aussi r_4^c .

1.1.3.4 Lois d'écoulement et d'écrouissage en chargement cyclique

La contribution du mécanisme de consolidation cyclique à la vitesse des déformations plastiques a la même forme que pour le mécanisme monotone :

$$\left(\dot{\mathbf{z}}^{p}\right)_{4}^{c} = \dot{\lambda}_{4}^{c} \cdot \mathbf{\Psi}_{(4)}^{c} = \dot{\lambda}_{4}^{c} \cdot \frac{p^{c} \cdot p}{3|p^{c}| \cdot |p|} \cdot \mathbf{I} = \frac{1}{3}\dot{\lambda}_{4}^{c} \cdot \operatorname{sgn}(p) \cdot \operatorname{sgn}(p^{c}) \cdot \mathbf{I}$$
 éq 1.1.3-10

où $\dot{\lambda}^c_4$ désigne le multiplicateur plastique sphérique cyclique, qui doit être positif, et où p^c est défini par [éq. 1.1.3-9].

La loi d'évolution suivie par la variable d'écrouissage r_4^c est pilotée par le même multiplicateur plastique $\dot{\lambda}^c_4$:

$$\dot{r}_{4}^{c} = \dot{\lambda}_{4}^{c} \, \rho_{4}^{c} = \dot{\lambda}_{4}^{c} \frac{\left(1 - r_{4}^{c} - r_{\acute{e}la}^{sc}\right)^{2}}{2c_{c}} \frac{P_{r\acute{e}f}}{P_{c}\left(\varepsilon_{v}^{p}\right)} \tag{eq 1.1.3-11}$$

 c_c est un paramètre (strictement positif) du mécanisme de consolidation cyclique. $P_{\it r\'ef}$ est la pression de confinement de référence et $P_c(\epsilon_v^p)$ la pression critique de référence [éq 1.1.1-13]. On doit toujours avoir $\dot{r}_4^c \ge 0$, de plus, [éq 1.1.3-11] impose que $r_4^c + r_{\acute{e}la}^{\it sc} \le 1$.

Nota:

Le facteur 2 apparaissant au dénominateur de [ég 1.1.3 -11] n'est pas noté dans les références [bib3], [bib4], mais est présent dans le logiciel Gefdyn ; ce facteur permet que les prédictions soient plus proches des résultats expérimentaux .

Le multiplicateur plastique $\dot{\lambda}^c_4$ est obtenu par résolution de l'équation de complémentarité de Kühn-Tücker, conjointement à la condition de cohérence :

$$\dot{\lambda}_{4}^{c}.f_{4}^{c}(\mathbf{\sigma}, \, \mathbf{\epsilon}_{v}^{p}, \, p_{H}, p_{H}^{c}, \, r_{4}^{c}) = 0$$
 et $\dot{f}_{4}^{c}(\mathbf{\sigma}, \, \mathbf{\epsilon}_{v}^{p}, \, p_{H}, p_{H}^{c}, \, r_{4}^{c}) = 0$ éq 1.1.3-12

d'où, en combinant avec [éq 1.1.1-9], dans le cas où seul ce mécanisme est activé :

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 17/67 Clé : R7.01.23 Révision

Révision c173ed655b50

$$\dot{\lambda}_{4}^{c} = -\frac{\mathbf{f}_{4,\sigma}^{c}.\dot{\sigma}}{\mathbf{f}_{4,\epsilon_{v}}^{c}\frac{p^{c}}{|p^{c}|}\frac{p}{|p|} + \mathbf{f}_{4,r_{4}^{c}}^{c}.\rho_{4}^{c}} = \frac{\langle \mathbf{f}_{4,\sigma}^{c}.\mathbf{C}.\dot{\epsilon}\rangle_{+}}{\mathbf{f}_{4,\sigma}^{c}\frac{p^{c}}{3|p^{c}|}\frac{p}{|p|}} \cdot \mathbf{C}.\mathbf{I} - \mathbf{f}_{4,\epsilon_{v}}^{c}\frac{p^{c}}{|p^{c}|}\frac{p}{|p|} - \mathbf{f}_{4,r_{4}^{c}}^{c}.\rho_{4}^{c}}$$
 éq 1.1.3-13

et dans le cas général, il faut tenir compte de la contribution de tous les mécanismes actifs sur l'écoulement plastique ϵ^p , cf. [éq 1.1.5-1] :

$$\begin{split} &\dot{\boldsymbol{\lambda}}_{4}^{c} \!\!=\! -\frac{\boldsymbol{f}_{4,\sigma}^{c}.\dot{\boldsymbol{\sigma}} \!+\! \boldsymbol{f}_{4,\varepsilon_{v}^{p}}^{c}.\left(\sum_{(K,k)\neq(c,4)}\dot{\boldsymbol{\lambda}}_{k}^{K}\boldsymbol{\Psi}_{(k)}^{K}.\boldsymbol{\mathbf{I}}\right)}{\boldsymbol{f}_{4,\varepsilon_{v}^{p}}^{c}.\boldsymbol{\Psi}_{(4)}^{c}.\boldsymbol{\mathbf{I}} \!+\! \boldsymbol{f}_{4,r_{4}^{c}}^{c}.\boldsymbol{\rho}_{4}^{c}} \\ &=\! \frac{\left\langle 3\boldsymbol{K}\left(\boldsymbol{p}\right).\operatorname{sgn}\left(\boldsymbol{p}\right).\operatorname{sgn}\left(\boldsymbol{p}\right).\operatorname{sgn}\left(\boldsymbol{p}^{c}\right)\operatorname{tr}\,\dot{\boldsymbol{\epsilon}} \!+\! \left(\sum_{(K,k)\neq(c,4)}\dot{\boldsymbol{\lambda}}_{k}^{K}\boldsymbol{\Psi}_{(k)}^{K}.\boldsymbol{\mathbf{I}}\right).\left(\boldsymbol{K}\left(\boldsymbol{p}\right).\operatorname{sgn}\left(\boldsymbol{p}\right).\operatorname{sgn}\left(\boldsymbol{p}^{c}\right) \!-\! \boldsymbol{f}_{4,\varepsilon_{v}^{p}}^{c}\right)\right)_{+}}{\boldsymbol{K}\left(\boldsymbol{p}\right) \!-\! \boldsymbol{f}_{4,\varepsilon_{v}^{p}}^{c}\operatorname{sgn}\left(\boldsymbol{p}\right).\operatorname{sgn}\left(\boldsymbol{p}^{c}\right) \!-\! \boldsymbol{f}_{4,r_{4}^{c}}^{c}.\boldsymbol{\rho}_{4}^{c}} \end{split}$$

Les divers termes apparaissant ici sont calculés en [éq 7-22], [éq 7-23], [éq 7-24]. L'expression [éq 1.1.3-13] contribue au calcul de l'accroissement des contraintes $\dot{\sigma}$, d'où l'on tire l'opérateur tangent, cf. [§ 2].

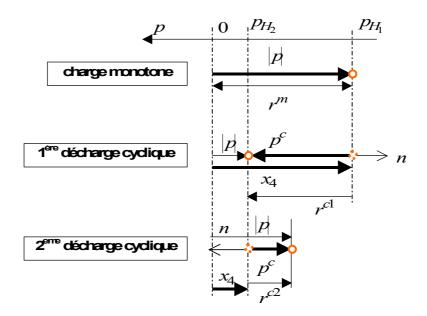


Figure 1.1-d : Évolution de la surface de charge sphérique sous un chargement monotone puis cyclique (visualisé après normalisation par $d \cdot P_{c0} \cdot e^{-\beta \, \epsilon_v^{\mu}}$).

Le terme n représente la direction de la variable mémoire $x_4 = \frac{p_H}{d \cdot P_{c0} \cdot e^{-\beta \, \varepsilon_v^p}}$ et équivaut à $\dot{x}_4/|\dot{x}_4|$

1.1.4 Traitement de la traction complémentaire à la loi de Hujeux

Même si le régime habituel de chargement du sol est la compression, il est possible de se trouver en traction, soit localement (en espace et/ou en temps), soit simplement au cours des itérations de résolution du système non linéaire des équations d'équilibre. Il est donc nécessaire de définir un

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 18/67 Clé: R7.01.23

Révision

c173ed655b50

comportement en traction. Il est ainsi proposé un mécanisme élastoplastique parfait, avec une cohésion nulle, dans chaque plan k, comme pour les critères déviatoriques en compression.

Le critère est établi sur la pression de confinement $p_k(\mathbf{\sigma}) = \frac{1}{2} \operatorname{tr}(\mathbf{\sigma}_{(k)})$ dans le plan k:

$$f_k^{tr}(\mathbf{\sigma}) = p_k(\mathbf{\sigma}) - p_0^{tr} \le 0$$
 éq 1.1.4-1

avec $p_0^{tr} = 10^{-6} . |P_{réf}|$.

La loi d'écoulement est associée :

$$\left(\dot{\mathbf{z}}^{p}\right)_{k}^{tr} = \dot{\lambda}_{k}^{tr} \left(\mathbf{\Psi}_{rs}\right)_{(k)}^{tr_{(s)}} = \dot{\lambda}_{k}^{tr} \cdot \frac{1}{2} \mathbf{I}_{k}$$
 éq 1.1.4-2

Le multiplicateur plastique $\dot{\lambda}_{rr}$ est obtenu par résolution de l'équation de complémentarité de Kühn-Tücker, conjointement à la condition de cohérence.

1.1.5 Évolution élastoplastique totale

La vitesse d'évolution élastoplastique totale résulte des contributions de tous ces mécanismes en trajets monotone et cyclique ([éq 1.1.2-3], [éq 1.1.2-14], [éq 1.1.3-2], [éq 1.1.3-10]), sans oublier les mécanismes associés à la traction, cf. [§ 1.1.4] :

$$\dot{\boldsymbol{\varepsilon}}_{rs}^{p} = \sum_{K=m,c} \left(\sum_{k=1}^{3} \dot{\boldsymbol{\lambda}}_{k}^{K} \left(\boldsymbol{\Psi}_{rs} \right)_{(k)}^{K_{(\sigma)}} \right) + \frac{1}{3} \operatorname{sgn} \left(\boldsymbol{p} \right) . \left(\dot{\boldsymbol{\lambda}}_{4}^{m} + \dot{\boldsymbol{\lambda}}_{4}^{c} . \operatorname{sgn} \left(\boldsymbol{p}^{c} \right) \right) \boldsymbol{I}_{rs} + \sum_{k=1}^{3} \dot{\boldsymbol{\lambda}}_{k}^{tr} \left(\boldsymbol{\Psi}_{rs} \right)_{(k)}^{tr_{(\sigma)}} \quad \text{eq -1.1.5-1}$$

La vitesse de déformation plastique volumique $\dot{\epsilon}_{v}^{p}$ (loi de dilatance) se déduit directement à l'aide de la relation $\epsilon_v^p = \operatorname{tr} \epsilon^p$ (elle n'est pas une variable d'état interne indépendante de ϵ^p). On précise néanmoins que la variable d'état interne relative aux déformations volumiques plastiques ne prend pas en compte la part des déformations plastiques issues des mécanismes plastiques de traction.

Remarque:

En situation 2D déformations planes ou axisymétriques, le plan k=3 correspond au plan $(\mathbf{e_{1}},\mathbf{e_{2}})$ du modèle . En exploitant les [éq 1.1.2 -3] et [éq 1.1.2 -14], on constate que $\dot{\epsilon}_{23}^{\dot{p}}=\dot{\epsilon}_{31}^{\dot{p}}=0$. Donc on aura toujours : $\dot{\epsilon}_{23}^{p}=\dot{\epsilon}_{31}^{p}=0$ et $\sigma_{23}=\sigma_{31}=0$, même si l'ensemble des mécanismes plastiques peut être activé.

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 19/67 Clé : R7.01.23 Révision

Révision c173ed655b50

1.2 Identification des paramètres caractéristiques du matériau

Les paramètres caractéristiques du matériau sont identifiés à l'aide de plusieurs essais et trajets de chargement. On fait ici le bilan des paramètres du modèle :

- E_0 et v_0 : caractéristiques élastiques à la pression de confinement initiale $P_{\it réf}$, à tirer de la donnée des modules de compressibilité K_0 et de cisaillement G_0 ($E_0 = \frac{9\,K_0\,G_0}{3\,K_0 + G_0}$, $v_0 = \frac{3\,K_0 2\,G_0}{6\,K_0 + 2\,G_0}$) ;
- $n \in [0, 1 [$ et $P_{réf}$: caractéristique élastique non linéaire et pression de confinement initiale (n=0 correspond à l'élasticité linéaire);
- P_{c0} : pression critique de référence initiale (négative) ;
- \bullet β : coefficient de compressibilité plastique volumique ou de loi d'état critique, (positif) ;
- $M = \sin \phi_{pp}$: pente de la droite d'état critique (ou plasticité parfaite; dans le plan $\left(\ln |p|, \varepsilon_{\nu}^{p}\right)$), ϕ_{pp} étant l'angle de frottement interne;
- ψ : angle de dilatance définissant la frontière $q=|p| \cdot \sin \psi$ dans le plan (p,q) entre domaine contractant et domaine dilatant (à ne pas confondre avec l'angle apparaissant dans la loi de Mohr-Coulomb);
- b_h : coefficient positif, influençant la fonction de charge dans le plan (p',q). Si $b_h=0$, on retrouve un seuil de type Mohr-Coulomb, si $b_h=1$, on retrouve un seuil de type Cam-Clay;
- d: coefficient positif, distance entre la droite d'état critique (plasticité parfaite) et la droite de consolidation isotrope, dans le plan $\left(\ln|p|, \, \epsilon_v^p\right)$, cf. [fig. 1.1-c];
- $r_{\acute{e}la}^d \in]0,1[$: caractérise la taille du seuil des mécanismes déviatoires monotones à l'état initial ;
- $r_{i}^{s} \in]0,1[$: caractérise la taille du seuil de consolidation monotone à l'état initial ;
- $r^{dc}_{\acute{e}la} \in]0,1[$: caractérise la taille du seuil des mécanismes déviatoires cycliques à l'état initial :
- $r_{\delta la}^{sc} \in]0,1[$: caractérise la taille du seuil de consolidation cyclique à l'état initial ;
- $a_{\scriptscriptstyle m}$, $a_{\scriptscriptstyle c}$: paramètres (>0) d'écrouissage des mécanismes plastiques déviatoires ;
- c_m , c_c : paramètres d'écrouissage (>0) des mécanismes de consolidation ;
- ζ_0 : paramètre définissant l'amplitude de la vitesse de déformation plastique volumique ;
- r_{hvs} : paramètre définissant la taille du domaine hystérétique ;
- r_{mob} : paramètre définissant la taille du domaine mobilisé;
- X_m : paramètre de la fonction $\zeta(r)$, cf. [éq 1.1.2-4].

Les valeurs de seuils initiaux pour un sol ordinaire sont souvent très faibles : $r_{\'ela}^s$ $r_{\'ela}^d$ et seront pris petits, tout comme $r_{\'ela}^{dc}$ et $r_{\'ela}^{sc}$, qui pourront avoir par défaut la même valeur que les deux précédents. Par défaut, on pourra prendre $\phi_{pp} = \psi$. On notera que l'équilibre naturel d'une pente impose que l'angle de frottement ϕ_{pp} soit supérieur à celui de la pente.

Pour des sols argileux, les valeurs de n sont habituellement plus grandes que pour des sols sableux. Parmi ces paramètres, certains sont traditionnels : élasticité, état initial (par exemple le paramètre OCR d'une argile – over-consolidation ratio – fournit le rapport P_{c0} /tr σ_0 ...); on pourra ajuster le

Responsable: M'JAHAD Sofia

Date : 22/11/2019 Page : 20/67 Clé : R7.01.23 Révision

Révision c173ed655b50

paramètre β à une observation expérimentale pertinente, par rapport à la droite d'état critique, cf. modèle de Cam-Clav...

On pourra trouver dans la littérature [bib11]..., des relations entre « indice de plasticité » I_p d'une argile, le paramètre OCR, l'indice des vides et le module G_0 . On trouve des relations entre β et l'« indice de compression » C_c et l'indice des vides e_0 . De même, φ_{pp} est relié à I_p .

Pour des sols argileux, les valeurs de b_h sont plutôt proches de 1, tandis que pour des sols sableux, les valeurs de b_h sont plutôt entre 0,1 et 0,2.

Autant de nombreux paramètres ci-dessus sont « directement mesurables » à partir d'essais, autant les paramètres comme b_h , ζ_0 , r_{mob} , r_{hys} doivent se déduire des réponses obtenues par le modèle, cf. [bib11].

Les essais traditionnels servant à identifier les paramètres du modèle sont :

- un essai in-situ (pressiomètre),
- un essai de laboratoire isotrope drainé,
- · un essai œdométrique,
- un essai triaxial consolidé drainé à déformation imposée, monotone et cyclique,
- un essai triaxial consolidé non drainé à déformation imposée, monotone et cyclique.

Pour trois types de sols sableux ou argileux, de densités relatives variées (la densité relative s'exprime en fonction de l'indice des vides e_0 par : $D_r = \frac{e_{\max} - e_0}{e_{\max} - e_{\min}}$) voici des valeurs caractéristiques :

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 21/67 Clé : R7.01.23 Révision

Révision c173ed655b50

Paramètres	Sol sableux lâche	Sol sableux dense	Limon sableux
	$D_r = 38\%$ [bib11]	$D_r = 93\%$ [bib9]	[bib10]
Élasticité			
${\cal K}_0^{}$ module de compressibilité	296. MPa	296. MPa	275.0 MPa
$\overline{G_0}$ module de cisaillement	222. MPa	222. MPa	128.0 MPa
E_0	532.8 MPa	532.8 MPa	332.4 MPa
v_0	0.20	0.20	0.30
n	0.40	0.40	0.60
État initial			
$P_{r\!e\!f}$	– 1. MPa	– 1. MPa	– 1. MPa
P_{c0} pression critique initiale	– 1800 kPa	– 4900 kPa	– 530. kPa
États plastique et critique			
β compressibilité plastique	43.	17.	33.
φ_{pp} angle de frottement interne	30°	30°	28°
ψ angle de dilatance	30°	30°	28°
b_h	0.2	0.22	0.9
d	3.5	3.5	2.
Seuils initiaux			
$r_{\mathit{\'e}la}^{\mathit{s}}$ seuil de consolidation initial	0.0001	0.0001	0.0003
$r_{{ec e}la}^d$ seuil déviatoire initial	0.005	0.005	0.0001
$r^{sc}_{\acute{e}la}$ seuil de consolidation initial	0.0001	0.0001	0.0003
$r^{dc}_{lpha la}$ seuil déviatoire initial	0.005	0.005	0.0001
Écrouissage			
a_m ; a_c	0.0003 ; 0.01	0.0001 ; 0.15	0.005 ; 0.01
c_m ; c_c	0.06 ; 0.03	0.06 ; 0.03	0.10 ; 0.05
ζ_0	1.	1.	1.
r _{hys}	0.03	0.003	0.002
r_{mob}	0.8	0.8	0.05
X _m	1.	1.	1.

Tableau 1.2-a : paramètres de Hujeux pour divers sols (sable de Toyoura ; noyau du barrage d'El Infiernillo).

Responsable : M'JAHAD Sofia Clé : R7.0

Date : 22/11/2019 Page : 22/67 Clé : R7.01.23 Révision

c173ed655b50

2 Intégration numérique de la relation de comportement

2.1 Rappel du problème

On emploie les notations suivantes : A^- , A, Δ A pour une quantité évaluée à l'instant connu $t^-=t_{i-1}$, à l'instant $t_i=t^-+\Delta$ t et son incrément Δ t respectivement. Les équations sont discrétisées de manière implicite, c'est-à-dire exprimées en fonction des variables inconnues à l'instant $t_i=t^-+\Delta$ t.

Pour un incrément de chargement donné et un ensemble de variables données (champ initial de déplacement, contrainte et variable interne), on résout le système global discrétisé ([éq 2.2.2.2-1] de [bib1]) qui cherche à satisfaire les équations d'équilibre.

 $\begin{array}{l} \textit{Code_Aster} \text{ utilise une méthode de Newton [bib1], initiée par une étape de prédiction (tir d'Euler) qui fournit une estimation $\Delta \mathbf{U}_i^0$ de l'incrément de déplacement, d'où la prédiction $\mathbf{U}_i^0 \! = \! \mathbf{U}_{i-1} \! + \! \Delta \mathbf{U}_i^0$, suivie d'itérations $n \! = \! 1, \ldots$ de correction, qui donnent des corrections $\delta \mathbf{U}_i^{n+1}$ de l'incrément de déplacement, d'où la mise à jour $\mathbf{U}_i^{n+1} \! = \! \mathbf{U}_i^n + \! \delta \mathbf{U}_i^{n+1}$, qui doit converger vers la solution $\mathbf{U}_i \! = \! \mathbf{U}^+$.$

L'option <code>RIGI_MECA_TANG</code> calcule l'opérateur tangent \mathbf{K}_{i-1} , pour l'étape de prédiction (linéarisation des équations d'équilibre autour de l'équilibre à l'instant t_{i-1}), à partir de la relation vitesses de contrainte rapportées aux vitesses de déformation, à l'aide de l'opérateur déformation assemblé $^T Q$.

$$\mathbf{K}_{i-1} = \frac{\partial \mathbf{R}}{\partial \mathbf{U}} \Big|_{\mathbf{U}_{i-1}} = \frac{d^T \mathbf{Q}}{d \mathbf{U}} \Big|_{\mathbf{U}_{i-1}} \cdot \mathbf{\sigma}_{i-1}$$
 éq 2.1-1

Remarque:

On peut décider, pour économiser du temps calcul, de ne pas réactualiser cette matrice, et de prendre la matrice de rigidité élastique, voir [U4.51.03], mot-clé NEWTON, opérande PREDICTION, valeur 'ELASTIQUE', plutôt que 'TANGENTE'. Mais cela peut augmenter le nombre d'itérations de correction, voire rendre la convergence délicate, notamment à cause de la loi élastique non linéaire constituant la loi de Hujeux [éq 1.1.1-10].

Les options RAPH_MECA et FULL_MECA calculent les contraintes σ_i^n , les variables internes et les forces nodales $\mathbf{R}\left[\mathbf{U}_i^n\right] = {}^T\mathbf{Q} \cdot \sigma_i^n$, à l'itération globale n.

L'option <code>FULL_MECA</code> calcule de plus l'opérateur tangent \mathbf{K}_i^n , à l'itération de correction globale n (sur demande via la commande <code>STAT_NON_LINE</code>, mot-clé facteur <code>NEWTON</code>, mot-clé <code>MATRICE='TANGENTE'</code> et <code>REAC_ITER</code>), à partir des contraintes σ_i^n et de la matrice tangente du problème local discrétisé en temps :

$$\mathbf{K}_{i}^{n} = \frac{\partial \mathbf{R}}{\partial \mathbf{U}}\Big|_{(\mathbf{U}_{i}^{n})}$$
 éq 2.1-2

La résolution de ces systèmes globaux d'équations d'équilibre nous donne des incréments $\Delta \, \mathbf{U}_i^n$, donc des incréments de déformation $\Delta \, \mathbf{\epsilon}_i^n$. On cherche donc localement (en chaque point de Gauss) l'incrément des contraintes et de variables internes correspondant à $\Delta \, \mathbf{\epsilon}_i$ et qui satisfont la loi de comportement. L'évolution des contraintes et des variables internes est obtenue par résolution d'un système d'équations différentielles, par intégration locale, sous les conditions initiales au début du pas de temps, décrite au [§ 2.2].

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 23/67 Clé : R7.01.23 Révision

Révision c173ed655b50

Les équations de comportement élastoplastique multi-mécanisme présentées au [§ 1] ne permettent pas de démontrer par une analyse simple l'unicité de la solution du problème d'équilibre de structure, discrétisé en temps. Le schéma d'intégration doit avoir une influence certaine sur les solutions calculées.

2.2 Schéma général d'intégration locale

Les schémas d'intégration locale choisis pour l'implantation de la loi de Hujeux dans $Code_Aster$ sont entièrement implicites formulés sur le problème incrémental, pour des raisons de précision de calcul. Ils utilisent une prédiction élastique puis des itérations de correction. Ils ont pour but de produire, un incrément de déformation $\Delta_{\,\epsilon}$ étant fourni, la valeur des contraintes et variables internes à l'instant $t_i = t^- + \Delta t$. La [fig. 2.2-a] présente l'organisation générale commune des algorithmes d'intégration locale.

Remarque:

Les évolutions des grandeurs calculées du modèle de Hujeux à travers une intégration implicite sont réputées être sensibles à des perturbations des données de l'algorithme d'intégration (par exemple selon le choix de la plate-forme de calcul ou du choix de discrétisation spatiale...). C'est pourquoi diverses dispositions ont été prises afin de limiter cette sensibilité : voir ci-après la description des tolérances introduites sur les incréments. On doit noter qu'à cause du caractère multi-mécanisme avec variables mémoratrices du modèle de Hujeux, l'activation effective des mécanismes n'étant pas un processus différentiable, la formulation en vitesse ne constitue pas la limite de la formulation incrémentale en temps.

Code_Aster ne propose pas d'intégration explicite pour ce modèle, cf. [R5.03.14], bien que cette méthode soit utilisée dans la littérature, cf. [bib3]. Les algorithmes d'intégration implicite disponibles sont au nombre de 4 et se distinguent selon les termes suivants :

- ALGO_INTE = 'SPECIFIQUE', il s'agit du 1^{er} schéma d'intégration implicite développé dans Code_Aster. Il est le schéma d'intégration le plus robuste, car il réalise pour l'utilisateur les subdivisions locales nécessaires pour assurer au maximum une convergence du schéma d'intégration
- ALGO_INTE = 'NEWTON', il s'agit du schéma d'intégration identique au précédent mais l'ensemble des routines mises en œuvre sont intégrées sous l'environnement de développement PLASTI. Les subdivisions locales pour assurer la convergence du schéma sont à présent à la charge de l'utilisateur.
- ALGO_INTE = 'NEWTON_PERT', il s'agit du schéma d'intégration basé sur le précédent, mais la matrice jacobienne du système non linéaire local à résoudre est évalué par perturbation. Ce schéma est surtout employé par les développeurs pour s'assurer d'une évaluation correcte de l'ensemble des termes mis en œuvre dans le calcul de la matrice jacobienne locale.
- ALGO_INTE='NEWTON_RELI', il s'agit du schéma d'intégration le plus performant, car il fait appel à une méthode de recherche linéaire locale lors de la résolution du système non linéaire local. Il reste néanmoins sensible à la discrétisation du chargement. Les subdivisions locales du chargement sont donc toujours à la charge de l'utilisateur.

Le processus de subdivision locale du pas de temps est disponible afin de réduire significativement les situations possibles de non-convergence, et d'économiser des itérations de correction. Il consiste à résoudre le comportement local sur des subdivisions linéaires de l'incrément de déformation Δ ϵ proposé par la résolution globale. La subdivision locale est activable dans l'opérateur de mécanique non linéaire de $Code_Aster$ (mot-clé facteur COMPORTEMENT et mot-clé ITER_INTE_PAS, cf. [U4.51.11].

Responsable : M'JAHAD Sofia Clé : R7.01.23 Révision

c173ed655b50

Date: 22/11/2019 Page: 24/67

2.2.1 Phase de prédiction

On commence par établir la prédiction élastique $\sigma_{ii\acute{e}}^+$ (tir élastique tangent approché – Euler) :

$$\sigma_{ij\acute{e}}^+ = \sigma_{ij}^- + C_{ijrs}(\hat{p}_{\acute{e}}) \cdot \Delta \varepsilon_{rs}$$
 éq 2.2.1-1

Le tenseur $C_{ijrs}(\hat{p}_{\acute{e}})$, défini par [éq 1.1.1-11], est obtenu à partir d'une expression discrétisée par un schéma approché de la pression de confinement :

$$\hat{p}_{\acute{e}} = \frac{1}{2} \left(p^{-} + p_{\acute{e}}^{+} \right) = p^{-} + \frac{1}{2} K_{0} \cdot \left| \frac{p^{-}}{P_{r\acute{e}f}} \right|^{n} \cdot \operatorname{tr} \Delta \varepsilon$$
 éq 2.2.1-2

Ce choix permet de limiter le risque d'avoir un prédicteur de pression de confinement produisant des contraintes trop éloignées des valeurs espérées, du fait de la forme non linéaire exponentielle de la loi élastique [éq 1.1.1-11].

On commence par une première étape de « reprédiction ». Un re-découpage de l'incrément de déformation $\Delta \varepsilon$ – supplémentaire de celui éventuellement demandé par l'utilisateur via les mots-clés de l'opérateur de mécanique non linéaire de *Code_Aster* – est introduit de manière à borner les incréments suivants, associés à la prédiction σ , via une simple homothétie :

$$\Delta \, p_{\,k} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, p_{\,k} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\, \acute{\mathbf{e}}} \right) \! / \, q_{\,k}^{\,K} \! \left(\mathbf{\sigma}_{\,\,$$

La finalité est d'éviter de possibles incursions au cours des itérations de correction vers des trajets de chargements trop éloignés, pouvant conduire à diverger (en sortant du domaine de convergence de l'algorithme de Newton).

2.2.1.1 Mécanismes plastiques potentiellement activés M^{pot}

Les mécanismes élastoplastiques M_k^K , pour $k=1,\ldots,4$ et K=m, c, sont activés ou inactivés selon le type de chargement suivi. Une famille de mécanismes potentiellement actifs est ainsi déterminée au préalable au début du pas courant à partir de l'état atteint précédemment, et sert à calculer l'évolution réellement suivie. Le choix initial des mécanismes potentiellement activés au démarrage du pas de temps considéré résulte de l'état mécanique convergé atteint à l'instant t : l'état d'activation des différents mécanismes (monotones ou cycliques) à l'instant t et valeurs des variables σ^- et α^- .

On note par M^{pot} l'ensemble des mécanismes plastiques potentiellement activés cf. [fig. 2.2-b], et par M^{act} l'ensemble des mécanismes plastiques réellement activés lors de l'intégration, cf. [fig. 2.2-c]. Cette définition permet de réduire au strict minimum la taille du système d'équations non linéaires locales à résoudre à chaque pas. On utilise la prédiction élastique [éq 2.2.1-1] pour établir une réestimation de M^{pot} à l'aide de l'évolution f_k^K pour $k=1,\ldots,4$ et K=m, c, des seuils des mécanismes et définir ainsi les situations de chargement en régime plastique ou de déchargement.

Titre : Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Clé: R7.01.23 Révision

Date: 22/11/2019 Page: 25/67

c173ed655b50

On initialise donc M^{pot} : $=M^{act}|_{t}^{-}|$, et on enregistre les variables d'histoire des mécanismes cycliques « pères » α_H^- , à partir de la situation à l'instant précédent t^- . On calcule pour tous les mécanismes M_k^K deux grandeurs aidant à la décision :

$$c_k^K = f_k^K \mathbf{\sigma} \left(\mathbf{\sigma}^- + \Delta \mathbf{\sigma}_{\ell l a s} \right) \cdot C(\hat{p}_{\ell}) \cdot \Delta \mathbf{\epsilon} \quad \text{et} \quad g_k^K = f_k^K \left(\mathbf{\sigma}^- + \Delta \mathbf{\sigma}_{\ell l a s} \right)$$
 éq 2.2.1-4

S'il s'agit d'un mécanisme cyclique $\,M_{\,k}^{\,c}\,$ alors, on calcule aussi $\,c_{\scriptscriptstyle k}^{^{m}}\,$ pour le mécanisme monotone M_k^m associé. En cas de difficultés, on procède à un re-découpage du pas de temps Δt . Si la valeur de $c_k^{\it m} \! \geq \! 0$, et si les deux surfaces de charge de $M_k^{\it c}$ et $M_k^{\it m}$ sont « proches », alors $M^{pot} := M^{pot} \cup \left[\begin{array}{c} M_k^m \end{array} \right] \lor \text{"} \left[\begin{array}{c} M_k^c \end{array} \right] \text{ et les propriétés d'écrouissage de } M_k^c \text{ sont réinitialisées à } r_{\acute{e}la}^c \text{ .}$ Cette proximité est établie en calculant la différence entre le facteur de mobilisation atteint pour le seuil monotone r_k^m et la valeur du facteur de mobilisation à l'état convergé précédent r_k^c ,

Puis on passe en revue tous les mécanismes possibles M_k^K en testant c_k^K et g_k^K . On identifie ainsi les situations :

- $\boldsymbol{M}_{k}^{\textit{m}} {\in} \boldsymbol{M}_{\textit{pot}}$. Alors, si $c_{k}^{\textit{m}} {\geq} 0$, $\boldsymbol{M}_{k}^{\textit{m}}$ reste dans $\boldsymbol{M}^{\textit{pot}}$; sinon, on mémorise les variables d'histoire correspondantes α_H^+ et si $g_k^c < 0$ pour le mécanisme cyclique M_k^c associé à $\boldsymbol{M}_k^{\it m}$, on désactive $\boldsymbol{M}_k^{\it c}$ et $\boldsymbol{M}_k^{\it m}$; mais si $c_k^{\it m}{\ge}0$ on désactive $\boldsymbol{M}_k^{\it m}$ au profit de $M^{c}_{\ \ \nu}$ mis dans M^{pot} .
- $M_k^m
 ot\in M_{pot}$. Alors, si $c_k^m \ge 0$ et $g_k^m \ge 0$, alors M^{pot} : = $M^{pot} \cup \left[M_k^m\right]$, mais si $g_k^m < 0$ M_k^m reste hors de M^{pot} .
- $M_k^c {\in} M_{pot}$. Alors, si $c_k^c {\geq} 0$, M_k^c reste dans M^{pot} ; sinon, on mémorise les variables d'histoire correspondantes $lpha_H^+$ et si $g_k^c{\ge}0$, on maintient M_k^c dans M^{pot} , mais si $g_{k}^{c} < 0$, M_{k}^{c} est retiré de M^{pot} .
- $M_{k}^{c}
 ot\in M_{pot}$. Alors, si $c_{k}^{c} \ge 0$ et $g_{k}^{c} \ge 0$, alors $M^{pot} := M^{pot} \cup \left[M_{k}^{c} \right]$ et on gère la potentialité de micro-décharges pour les seuls mécanismes déviatoires : on teste le seuil du mécanisme « père » de M_k^c : si $g_k^c {\ge} 0$ alors le mécanisme « fils » M_k^c est remplacé par ce mécanisme « père » M_k^c avec mise à jour des variables d'histoire α_H^+ . Si $c_k^c \! < \! 0$, on mémorise les variables d'histoire correspondantes et si $r_k^c \! \geq \! r_{\acute{e}la}^{dc}$ on crée un mécanisme « fils » M_k^c , dont la surface de charge est tangente à celle du mécanisme « père », qui est mis dans M^{pot} si son seuil vérifie $g_k^c \ge 0$, sinon, M_k^c est désactivé.

Bien entendu, si $M_k^K \in M^{pot}$ pour K = m ou c , alors le mécanisme « frère » pour K = m ou \emph{c} n'est pas dans $\emph{M}^{\it pot}$. Si au terme de l'analyse des diverses situations ci-dessus, aucun mécanisme ne subsiste dans M^{pot} alors le régime sera élastique, voir cf. [fig. 2.2 -b] .

Le régime élastique advient lorsque aucun mécanisme n'est activé.

On impose à la prédiction $ilde{p}_{k_s}$ de chaque mécanisme d'être strictement négatif pour pouvoir respecter les domaines de définition des diverses dérivées qui interviennent dans les équations ci-

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 26/67 Révision

c173ed655b50

dessous : ainsi on obtient la prédiction en contrainte $\hat{\sigma}_{ij\acute{e}}^{+} = \sigma_{ij}^{-} + \mathbf{C}_{ijrs}(\hat{p}_{\acute{e}})$. η . Δ $\mathbf{\epsilon}_{rs}$ où $\hat{p}_{\acute{e}}$ est défini en [éq 2.2.1-2] et avec η tel que $\tilde{p}_{k_i} \leq 10^{-6}$. $P_{r\acute{e}f}$. On note par la suite $\tilde{\mathbf{Y}}_{\acute{e}} = \left[\tilde{\mathbf{\sigma}}_{ij\acute{e}}^+, \, \mathbf{\epsilon}_v^{p^-}, \, r_k^{K^-}, \, \mathbf{0}\right]$.

On cherche ensuite une solution d'essai explicite en calculant un candidat $(\Delta \lambda_k^K)_0$ à l'aide des mécanismes potentiellement actifs M_k^K , en résolvant les équations linéarisées autour de l'état sans évolution plastique $\,\tilde{\sigma}_{\acute{e}}\,$:

$$\frac{\partial f_{k}^{K}}{\partial \left(\Delta \lambda_{k}^{K}\right)}|_{\hat{\mathbf{Y}}_{\acute{e}}}.\left(\Delta \lambda_{k}^{K}\right)_{0} = -f_{k}^{K}\left(\mathbf{\sigma}^{-} + \mathbf{C}\left(\hat{p}_{\acute{e}}\right).\Delta \,\mathbf{\epsilon}\,,\,\,\mathbf{\epsilon}_{v}^{p-},\,\,r_{k}^{K-}\right) \tag{eq 2.2.1-5}$$

avec:

$$\frac{\partial f_{k}^{K}}{\partial \left[\Delta \lambda_{k}^{K}\right]}|_{\hat{\mathbf{Y}}_{\hat{\epsilon}}} = -\frac{\partial f_{k}^{K}}{\partial \mathbf{\sigma}_{k}^{K}}|_{\hat{\mathbf{Y}}_{\hat{\epsilon}}} \cdot \mathbf{C}\left[\hat{p}_{\hat{\epsilon}}\right] \cdot \mathbf{\Psi}_{(k)}^{K-} + \frac{\partial f_{k}^{K}}{\partial \varepsilon_{v}^{p}}|_{\hat{\mathbf{Y}}_{\hat{\epsilon}}} \cdot \mathbf{\Psi}_{(k)}^{K-} \cdot \mathbf{I} + \frac{\partial f_{k}^{K}}{\partial r_{k}^{K}}|_{\hat{\mathbf{Y}}_{\hat{\epsilon}}} \cdot \rho_{k}^{K-}$$
 éq 2.2.1-6

les dérivées étant données par [éq 7-13] à [éq 7-24]. D'où ensuite la solution d'essai ΔY_0 :

$$(\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\varepsilon} - \sum_{k,K} \left(\Delta \lambda_{k}^{K}\right)_{0} \boldsymbol{\Psi}_{(k)}^{K-}\right) ; \left(\Delta \boldsymbol{\varepsilon}_{v}^{P}\right)_{0} = \sum_{k,K} \left(\Delta \lambda_{k}^{K}\right)_{0} \boldsymbol{\Psi}_{(k)}^{K-} \cdot \mathbf{I} ; \left(\Delta \boldsymbol{r}_{k}^{K}\right)_{0} = \left(\Delta \lambda_{k}^{K}\right)_{0} \cdot \rho_{k}^{K-}$$

$$= (\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\varepsilon}_{k}^{F}\right)_{0} = \sum_{k,K} \left(\Delta \lambda_{k}^{K}\right)_{0} \boldsymbol{\Psi}_{(k)}^{K-} \cdot \mathbf{I} ; \left(\Delta \boldsymbol{r}_{k}^{K}\right)_{0} = \left(\Delta \lambda_{k}^{K}\right)_{0} \cdot \rho_{k}^{K-}$$

$$= (\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\sigma}_{k}^{F}\right)_{0} = \sum_{k,K} \left(\Delta \lambda_{k}^{F}\right)_{0} \boldsymbol{\Psi}_{(k)}^{K-} \cdot \mathbf{I} ;$$

$$= (\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\sigma}_{k}^{F}\right)_{0} = \sum_{k,K} \left(\Delta \lambda_{k}^{F}\right)_{0} \boldsymbol{\Psi}_{(k)}^{K-} \cdot \mathbf{I} ;$$

$$= (\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\sigma}_{k}^{F}\right)_{0} \boldsymbol{\Psi}_{(k)}^{F-} \cdot \mathbf{I} ;$$

$$= (\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\sigma}_{k}^{F}\right)_{0} \boldsymbol{\Psi}_{(k)}^{F-} \cdot \mathbf{I} ;$$

$$= (\Delta \boldsymbol{\sigma})_{0} = \boldsymbol{\sigma}^{-} + \mathbf{C}(\hat{p}_{\acute{e}}) \cdot \left(\Delta \boldsymbol{\sigma}_{k}^{F}\right)_{0} \boldsymbol{\Psi}_{(k)}^{F-} \cdot \mathbf{I} ;$$

De plus, on impose la condition $(\Delta \lambda_k^K)_0 \ge 0$; les facteurs de mobilisation sont aussi bornés sur la solution d'essai : $\left|r_k^m\right|_0 \le 1$ et $\left(r_k^c\right)_0 \le \left(r_k^m\right)_0$, de telle manière que la solution d'essai respecte la vraisemblance de l'évolution des variables internes. Sur la base de ces critères, on introduit également une restriction sur l'évolution de la déformation volumique plastique également, $||\Delta \varepsilon_{\nu}^{p}|_{0}| \leq 10\%$.

Remarque:

L'expression de la pression critique fonction de la déformation plastique volumique faisant intervenir une exponentielle [éq 1.1.1-13], on prévient le risque de valeurs trop élevées débordant du domaine de convergence en enclenchant un découpage de l'incrément de déformation $\Delta \epsilon$ donné si nécessaire.

2.2.2 Phase de correction : équations non linéaires à résoudre

Cette étape consiste à résoudre le système d'équations locales non linéaires établi sur la base des mécanismes potentiellement activés M^{pot} . Après convergence, on réévalue l'ensemble des mécanismes réellement activés M^{act} , cf. [§2.2.3.1], et s'il y a une différence avec M^{pot} , on reprend la résolution locale non linéaire avec M^{act} .

Itérations de correction de Newton

Les itérations de correction de Newton consistent à résoudre les équations suivantes, pour $\Delta \epsilon$ donné, voir [éq 6-1] :

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 27/67 Clé: R7.01.23 Révision

c173ed655b50

- l'équation d'état incrémentale [éq 1.1.1-9], notée LE_{ij} (6 équations scalaires),
- l'évolution incrémentale de la déformation plastique volumique $\Delta \, \epsilon^p_{\nu}$ [éq 1.1.5-1] : LEVP ,
- l'évolution incrémentale des facteurs de mobilisation Δr_k^K [éq 1.1.2-5], [éq 1.1.2-15], [éq 1.1.3-3], et [éq 1.1.3-11], notés LR.1 et LR.2 (1 pour les mécanismes déviatoires, 2 pour les mécanismes de consolidation ; autant d'équations que de mécanismes actifs),
- les critères des divers mécanismes potentiellement actifs $f_k^K = 0$ [éq 1.1.2-1], [éq 1.1.2-9], [éq 1.1.3-1], et [éq 1.1.3-7], notés LF.1 et LF.2 (1 pour les mécanismes déviatoires, 2 pour les mécanismes de consolidation ; autant d'équations que de mécanismes actifs).

carré $\mathbf{R}(\Delta \mathbf{Y}) = 0$, où les inconnues Elles constituent système $\Delta \mathbf{Y} = \left[\Delta \mathbf{\sigma}_{ii}, \Delta \varepsilon_v^p, \Delta r_k^K, \Delta \left(\Delta \lambda_k^K \right) \right]$, qui couplent les équations (au nombre de 15 au maximum et 9 au minimum). On résout de manière implicite le système $\mathbf{R}(\Delta \mathbf{Y})=0$ par une méthode de Newton, pour K = m, c et k = 1, ..., 4.

À l'itération j de la boucle de correction locale de Newton, on résout l'équation matricielle :

$$\frac{d\mathbf{R}}{d(\Delta\mathbf{Y})}|_{\Delta\mathbf{Y}_{j}} \cdot \delta\Delta\mathbf{Y}_{j+1} = -R(\Delta\mathbf{Y}_{j})$$
 éq 2.2.2-1

où la matrice tangente $\frac{d \mathbf{K}}{d |\Delta \mathbf{Y}|}|_{\Delta \mathbf{Y}_j}$, non symétrique, est calculée de la manière présentée au [§ 6], selon [éq 6-2], avec une mise à jour du tenseur d'élasticité avec la valeur actualisée de la pression de confinement $\frac{1}{3} \operatorname{tr} \left(\boldsymbol{\sigma}^- + \Delta \, \boldsymbol{\sigma}_j \right)$ à l'itération précédente, selon [éq 1.1.1-11] :

$$\frac{d\mathbf{R}}{d|\Delta\mathbf{Y}|}|_{\Delta\mathbf{Y}} = \begin{bmatrix} \frac{\partial LE_{ij}}{\partial \sigma_{rs}} & \frac{\partial LE_{ij}}{\partial \varepsilon_{r}^{p}} & \frac{\partial LE_{ij}}{\partial r_{k}^{k}} & \frac{\partial LE_{ij}}{\partial (\Delta\lambda_{k}^{K})} \\ \frac{\partial LEVP}{\partial \sigma_{rs}} & \frac{\partial LEVP}{\partial \varepsilon_{r}^{p}} & \frac{\partial LEVP}{\partial r_{k}^{k}} & \frac{\partial LEVP}{\partial (\Delta\lambda_{k}^{K})} \\ \frac{\partial LR.1}{\partial \sigma_{rs}} & \frac{\partial LR.1}{\partial \varepsilon_{r}^{p}} & \frac{\partial LR.1}{\partial r_{k}^{k}} & \frac{\partial LR.1}{\partial (\Delta\lambda_{k}^{K})} \\ 0 & \frac{\partial LR.2}{\partial \varepsilon_{r}^{p}} & \frac{\partial LR.2}{\partial r_{k}^{k}} & \frac{\partial LR.2}{\partial (\Delta\lambda_{k}^{K})} \\ \frac{\partial LF.1}{\partial \sigma_{rs}} & \frac{\partial LF.1}{\partial \varepsilon_{r}^{p}} & \frac{\partial LF.1}{\partial r_{k}^{k}} & 0 \\ \frac{\partial LF.2}{\partial \sigma_{rs}} & \frac{\partial LF.2}{\partial \varepsilon_{r}^{p}} & \frac{\partial LF.2}{\partial r_{k}^{k}} & 0 \end{bmatrix}$$

On a mis au préalable les diverses lignes de ce système « à l'échelle », en divisant les équations d'état LE_{ij} et les seuils LF par le module de Young initial E_0 , les lois d'évolution LR par $P_{\it r\'ef}/E_0$ et les contraintes ainsi que les facteurs de mobilisation r_k^K dans le vecteur inconnu $\Delta \mathbf{Y}_i$ sont mises à l'échelle des déformations via le module de Young initial E_0 et la pression $P_{r\acute{e}f}$. Ce choix permet d'avoir des équations du même ordre de grandeur donc d'assurer une convergence plus « uniforme » sur l'ensemble du système [éq 2.2.2-3].

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 28/67 Clé : R7.01.23 Révision

c173ed655b50

La matrice jacobienne présentée ci-dessus est évaluée analytiquement pour les schémas d'intégration 'NEWTON', 'NEWTON_RELI' et 'SPECIFIQUE'. Elle est évaluée par perturbation pour le schéma d'intégration 'NEWTON PERT'.

Remarque:

Le déterminant de la matrice tangente $\frac{d\,\mathbf{R}}{d\,(\Delta\,\mathbf{Y})}|_{\Delta\,\mathbf{Y}_j}$ est a priori positif en phase d'écrouissage positif. Cependant, il pourrait devenir négatif ; aucun traitement particulier n'est prévu..

La convergence est réputée acquise dès lors que (tol est donnée par le mot-clé RESI_INTE_RELA du mot-clé facteur COMPORTEMENT de la commande STAT_NON_LINE, cf. [U4.51.11]) :

$$\|\mathbf{R}(\Delta \mathbf{Y}_{i+1})\| \le tol$$
 éq 2.2.2-3

cette norme | | . | sur le résidu utilisant aussi la mise à l'échelle des divers termes intervenant.

Remarque:

On recommande fortement d'utiliser une valeur de tolérance inférieure ou égale à 10^{-7} (mot-clé RESI_INTE_RELA), au moins dans les étapes les plus « délicates » du trajet de chargement.

Afin d'éviter de possibles incursions au cours des itérations de correction vers des trajets de chargements trop éloignés, pouvant conduire à diverger (en sortant du domaine de convergence locale de l'algorithme de Newton), l'algorithme d'intégration de Hujeux dit 'SPECIFIQUE' impose aussi un re-découpage de l'incrément de déformation $\Delta_{\mathbf{c}}$ si l'étape de correction aboutit à produire des incréments de facteurs de mobilisation $\Delta r_k^K/r_k^K \! \ge \! 10$. De plus, on impose que les valeurs prédites à ce stade des facteurs de mobilisation déviatoires vérifient : $r_k^{m^+} \! \le \! 1$ et $r_k^{c^+} \! \le \! r_k^{m^+}$ pour les mécanismes actifs. De plus, on enregistre les cas où les multiplicateurs plastiques sont négatifs. Si - $\eta_{tol\acute{e}} \le \! \Delta \lambda_k^K / \underbrace{Max}_{K=1,\dots,4} (\Delta \lambda_k^K) \le \! 0$, où $\eta_{tol\acute{e}}$ désigne la valeur de RESI_INTE_RELA fourni par l'utilisateur, alors on impose : $\Delta \lambda_k^K = \! 0$. Cela permet de limiter les effets « néfastes » des mécanismes en chargement « neutre », c'est-à-dire $\Delta \lambda_k^K \! \approx \! 0$.

La dernière tâche de gestion des mécanismes décrite ci-après intervient après un échec de l'algorithme de Newton local (§ [2.2.2]) ou bien si des critères, précisés ci-dessous, sont violés. Toute modification apportée au domaine de mécanismes potentiellement actifs M^{pot} conduira ensuite à reprendre avec le nouvel M^{pot} la résolution du système d'équations non linéaire. Ce processus de mise à jour est toutefois limité à 5 tentatives de reconstruction, faute de quoi on déclare une nonconvergence de l'intégration locale.

- Les premiers cas traités s'intéressent après chaque itération de l'algorithme de Newton local au risque de chevauchement de deux surfaces de charge déviatoires cyclique et monotone ou cyclique et cyclique dans l'espace des contraintes. Ces problèmes sont évités via des tests de proximité entre la position de l'état de contrainte dans le plan déviatoire considéré et la surface de charge considérée.
 - Dans le cas particulier de deux surfaces de charge déviatoires cyclique et monotone, si le critère de proximité est vérifié, le mécanisme monotone \boldsymbol{M}_k^m est ajouté directement au domaine des mécanismes \boldsymbol{M}^{pot} tout en retirant le mécanisme déviatoire cyclique \boldsymbol{M}_k^c considéré actif jusqu'à présent dans \boldsymbol{M}^{pot} .

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 29/67 Clé: R7.01.23 Révision

c173ed655b50

- Pour les cas de proximité de deux surfaces de charge de mécanismes déviatoires cycliques « père » et « fils », le critère porte sur la proximité de l'état de contraintes dans le plan déviatoire considéré par rapport à la valeur enregistrée $\mathbf{X}_{(k)}^H$ comme point de tangence entre les surfaces de charge « père » et « fils ». Dès lors que le critère de proximité est atteint, le mécanisme déviatoire « fils » $M_{\it k}^{\it c}$ est retiré du domaine potentiel de mécanismes
- Après ces tests de proximité de surfaces de charge déviatoires, il est nécessaire de traiter les états de contraintes de traction causant très souvent la non-convergence du système non linéaire local à résoudre.
 - Si un état de traction est détecté après échec de la méthode de résolution, pour tout multiplicateur plastique associé à un mécanisme déviatoire considéré dans M^{pot} négatif après le tir explicite d'Euler, $\left(\Delta \lambda_k^K\right)_0$, ce mécanisme déviatoire sera retiré de M^{pot} . Cette solution pour relancer la résolution du système non linéaire local n'impose aucune restriction sur la valeur du prédicteur de contraintes. Ce prédicteur est établi en considérant un incrément de déformation purement élastique.
 - Si tous les multiplicateurs plastiques sont positifs, i-e $\left|\Delta\lambda_k^K\right|_0 \ge 0$, alors tous les mécanismes déviatoires sont retirés de M^{pot} : les mécanismes de consolidation intégrés seuls permettent de préparer un nouveau prédicteur pour l'étape d'intégration locale suivante après actualisation de M^{act} .
- Pour les cas différents des deux grandes classes décrites ci-dessus (proximité et traction), si la valeur maximum du vecteur résidu $\mathbf{R}[\Delta\mathbf{Y}_{i}]$ est porté par une loi d'évolution d'un facteur de mobilisation de mécanisme déviatoire cyclique $\,M_{k}^{c}$, (soit l'équation $\,LR.\,I\,$ de [éq 6-1]), alors le mécanisme en question est retiré de M^{pot} .
- Le cas suivant s'intéresse uniquement aux mécanismes déviatoires cycliques jamais écrouis précédemment. Ces mécanismes sont alors retirés de M^{pot} s'il y a eu échec lors de la résolution du système d'équations non linéaires.
- Les derniers cas portent sur la valeur des multiplicateurs plastiques après le tir d'Euler, $(\Delta \lambda_k^K)_0$.
 - Les mécanismes associés à des valeurs négatives sont retirés de M^{pot} .
 - Si tous les multiplicateurs plastiques sont positifs, on retire le mécanisme présentant la valeur la plus faible pour $\left(\Delta \lambda_k^K\right)_0$ après le tir d'Euler.

Si aucun des traitements spécifiques décrits ci-dessus n'a été sollicité, la non-convergence du modèle à l'échelle locale est assumée et cette information est renvoyée à l'algorithme d'intégration globale de l'équilibre non linéaire.

2.2.3 Phase de mise à jour

Après résolution, on met à jour le vecteur solution :

$$\Delta \mathbf{Y}^{+} = \Delta \mathbf{Y}_{i+1} = \Delta \mathbf{Y}_{i} + \delta \Delta \mathbf{Y}_{i+1}$$
 éq 2.2.3-1

ce qui achève l'étape d'intégration locale, et on cale $M^{act} = M^{pot}$ pour commencer.

Mécanismes plastiques réellement activés M^{act}

On décrit ci-après la gestion de l'activation réelle des mécanismes plastiques. Après convergence du système d'équations locales non linéaire, on est amené à vérifier l'ensemble des mécanismes réellement activés M^{act} selon la procédure suivante, en partant de la prédiction M^{pot} , cf. [fig. 2.2c]. Cet arbre de décision est un élément constitutif du modèle de Hujeux, puisqu'il décrit

Manuel de référence Fascicule r7.01: Modélisations pour le Génie Civil et les géomatériaux

Responsable : M'JAHAD Sofia Clé : R7.01.23

Révision c173ed655b50

Date: 22/11/2019 Page: 30/67

l'enchaînement des mécanismes cycliques et les enregistrements des variables mémoratrices discrètes et les éventuelles restaurations des variables d'écrouissage, cf. aussi [fig. 1.1-b] et [fig. 1.1-c].

Remarque:

Avec une intégration explicite, cf. [bib 5 , on procèderait plutôt avec des re-découpages (sous-incrémention) pour gérer les transitions de mécanismes.

On passe donc en revue tous les mécanismes, toute modification de M^{act} conduisant à rependre une nouvelle résolution locale non linéaire, cf. [§ 2.2.2.1] :

- cas d'un mécanisme déviatorique monotone actif M_k^m avec un multiplicateur plastique $\Delta \, \lambda_k^K$ négatif :
- si $r_k = r_{\acute{e}la}^d$, alors ce mécanisme M_k^m est désactivé : $M_{act} := M_{act} \setminus \{ \ M_k^m \}$;
- sinon (remise en cause de l'estimation faite dans $\,M_{\,pot}\,$) :
- s'il existait un mécanisme cyclique M_k^c préalablement à l'étape de M_{pot} , on garde les variables de mémoire de ce mécanisme, on le déclare créé et on enlève le mécanisme monotone $M_k^m:M_{act}:=M_{act}\setminus\{M_k^m\}$,
- s'il n'existait pas de mécanisme cyclique, on mémorise les variables de mémoire et on crée un mécanisme cyclique M_k^c et on enlève M_k^m : $M_{act} := M_{act} \setminus \{M_k^m\}$.
- cas d'un mécanisme isotrope monotone actif $\,M_{\,4}^{\it m}\,$ avec un multiplicateur plastique négatif :
- si $r_4\!=\!r_{\acute{e}la}^s$, alors ce mécanisme M_4^m est désactivé : $M_{act}\!:=\!M_{act}\!\setminus\!\{\,M_4^m\,\}$,
- sinon
- s'il existait un mécanisme cyclique M_4^c préalablement à l'étape de M_{pot} , on garde les variables de mémoire de ce mécanisme, on le déclare créé et on enlève M_4^m : $M_{act}:=M_{act}\backslash\{M_4^m\}$,
- s'il n'existe pas de mécanisme cyclique, on ne mémorise les variables de mémoire et on ne crée un mécanisme cyclique M_4^c que si $\frac{|p|}{d|p_c|} < 0$ (on rappelle que p_c dépend de ϵ_v^p , qui luimême varie en fonction de tous les mécanismes), et dans ce cas, on enlève M_4^m .
 - cas d'un mécanisme déviatorique monotone M_k^m créé mais inactif : si le seuil $f_k^m(t^+) \ge 0$ alors ce mécanisme devient actif : M_{act} := $M_{act} \cup \left\{M_k^m\right\}$, et les variables d'écrouissage du mécanisme cyclique M_k^c associé prennent les valeurs initiales vierges.
 - cas d'un mécanisme isotrope monotone M_4^m créé mais inactif : si le seuil $f_4^m(t^+) \ge 0$ alors ce mécanisme devient actif : M_{act} : $= M_{act} \cup \left\{ M_4^m \right\}$; si le seuil $f_4^m(t^+) < 0$ alors on ne mémorise les variables de mémoire et on ne crée un mécanisme cyclique et on n'enlève M_4^m que si $\frac{1}{\left[\frac{|p|}{d\,|p_c|}\right]} < 0$.
 - cas d'un mécanisme cyclique \boldsymbol{M}_k^c créé auparavant dans \boldsymbol{M}^{pot} à partir d'un mécanisme monotone :
- si le multiplicateur plastique est négatif alors le mécanisme est désactivé : M_{act} := M_{act} \{ M_k^c }; sinon, on passe à :
- si le seuil du mécanisme monotone $\,M_{_k}^{^m}\,$ associé $\,f_{_k}^{^m}\!(t^+)\!\!\geq\!0\,$ alors :

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 31/67 Clé : R7.01.23 Révision

c173ed655b50

- pour un mécanisme déviatorique, on passe en monotone : $M_{act} := M_{act} \setminus \{M_k^c\} \cup \{M_k^m\}$ et les variables d'écrouissage du mécanisme cyclique M_k^c reprennent les valeurs initiales vierges,
- pour un mécanisme isotrope : si la variable d'histoire de direction change de signe entre à t^- et t^+ suite à M^{pot} , alors on reste en cyclique M^c_4 ; sinon on passe en monotone : $M_{act} := M_{act} \setminus \{ \ M^c_4 \ \} \cup \left[\ M^m_4 \ \right] \quad \text{et les variables d'écrouissage du mécanisme cyclique } M^c_k$ reprennent les valeurs initiales vierges.

mémoratrices de ce mécanisme M_k^c sont mises à jour, et les variables d'écrouissage du mécanisme déviatorique monotone « père » sont réinitialisées à l'état vierge. Cela empêche le franchissement du seuil du mécanisme monotone par le seuil du mécanisme cyclique.

- si le mécanisme cyclique M_k^c est déclaré créé mais inactif dans M^{pot} alors :
- s'il s'agit d'un mécanisme déviatorique $\,M_{\,k}^{\,c}\,$, alors :
 - si le seuil $f_k^c(t^+) \ge 0$ alors M_k^c est déclaré actif et :

 $f_k(t) \ge 0$ ce mecanisme M_k reprend les variables memorations du mécanisme « père » – qui redevient actif – ainsi que sa valeur de r_k^c , puis le mécanisme « père » est réinitialisé à l'état vierge ;

mémoratrices à t^+ de ce mécanisme $M_{\,k}^{\,c}$ sont stockées dans celles d'un mécanisme « père » dont on doit garder les valeurs, et les variables mémoratrices de ce mécanisme « fils » $M_{\,k}^{\,c}$ – qui devient actif – deviennent :

$$X_{(k)\,fils}^{H} = X_{(k)\,p\grave{e}re}^{H} + 2\mathbf{r}_{k}^{c} \frac{S_{(k)\,p\grave{e}reH}^{c}}{\parallel S_{(k)\,p\grave{e}reH}^{c}\parallel^{2\mathrm{D}}} \quad \text{et} \quad \frac{\mathbf{S}_{(k)\,filsH}^{c}}{\parallel \mathbf{S}_{(k)\,filsH}^{c}\parallel^{2\mathrm{D}}} = \frac{-\mathbf{S}_{(k)\,p\grave{e}reH}^{c}}{\parallel \mathbf{S}_{(k)\,p\grave{e}reH}^{c}\parallel^{2\mathrm{D}}} \quad ;$$

• si les variables mémoratrices estimées avant l'étape de M^{pot} vérifient $X_{(k)}^H
eq X_{(k)}^H (t^-)$

$$\text{et} \quad X^H_{(k)}\!\!\left(t^-\right) \neq 0 \quad \text{, alors si à } t^+ \quad \frac{S^c_{(k)H}}{\parallel S^c_{(k)H} \parallel_{\mathit{VM}}^{2\mathrm{D}}}. \\ \left(\quad X^H_{(k)} - \frac{S^c_{(k)}}{p_k \,.\, F\left(\begin{array}{c} p_k \,,\, \epsilon^p_v \end{array}\right)} \right) \\ \geq 0 \quad \text{on égalise les}$$

variables mémoratrices à t^+ avec ces valeurs estimées, et de plus si le seuil $f_k^c(t^+) \ge 0$, alors M_k^c est activé et on égalise aussi les variables mémoratrices à t^- et à t^+ , de même les valeurs de r_k^c , et sinon, il est inutile de reprendre une résolution non linéaire locale ;

si les variables mémoratrices estimées avant l'étape de M^{pot} vérifient $X_{(k)}^H \neq X_{(k)}^H (t^-)$ et $X_{(k)}^H (t^-) = 0$ (le « père » est un mécanisme monotone), alors si

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 32/67 Clé: R7.01.23

Révision

c173ed655b50

$$\frac{S_{(k)H}^{c}}{\parallel S_{(k)H}^{c}\parallel_{\mathit{VM}}^{2\mathrm{D}}}.\left(\quad X_{(k)}^{H} - \frac{S_{(k)}^{c}}{p_{k}.F\left(\begin{array}{c} p_{k}, \epsilon_{v}^{p} \end{array} \right)} \right) \geq 0 \quad \text{à } t^{+} \quad \text{les variables mémoratrices de ce}$$

mécanisme M_{k}^{c} sont réinitialisées à l'état vierge et M_{k}^{m} est activé ;

- si à $t^ r^c_{\,k}
 eq r^{dc}_{\,\dot{e}la}$, alors on enregistre les variables mémoratrices de ce mécanisme $\,M^c_{\,k}$ à l'instant t^+ (un nouveau « père » est créé) et on réinitialise à l'état vierge ce mécanisme $r_k^{c+} = r_{ela}^{dc}$, qui est créé inactif. Dans ce cas, il est inutile de reprendre une résolution non linéaire
 - s'il s'agit d'un mécanisme isotrope $\,M_{_{A}}^{c}\,$ et :

si
$$\left(\begin{array}{c|c} \frac{\mid p\mid}{d\mid p_c\mid} \end{array}\right)^+ \leq \left(\begin{array}{c|c} \frac{\mid p\mid}{d\mid p_c\mid} \end{array}\right)^-$$
 et $p_H^c / |p_H^c| = 1$ à t^- (réduction de la

compression) : si le seuil $f_4^c(t^+) \ge 0$ alors M_4^c est déclaré actif sinon les variables mémoratrices de ce mécanisme isotrope à t^+ reprennent les valeurs avant l'étape de M^{pot} . De plus, si $p_H^c=0$ à l'étape $\,M^{\it pot}\,$, alors les mécanismes associés $\,M_{\,4}^{\it m}\,$ et $\,M_{\,4}^{\it c}\,$ sont inactivés ;

compression) : si le seuil $f_4^c(t^+) \ge 0$ alors M_4^c est déclaré actif sinon les variables mémoratrices de ce mécanisme isotrope à t^+ prennent les valeurs avant l'étape de M^{pot} ;

• si
$$\left(\begin{array}{c|c} |p| \\ \hline d|p_c| \end{array}\right)^+ > \left(\begin{array}{c|c} |p| \\ \hline d|p_c| \end{array}\right)^-$$
 et $p_H^c I |p_H^c| = 1$ à t^- (réduction de la compression):

- si $p_H^c/|p_H^c|$ change de signe à cette étape, alors les variables mémoratrices de ce mécanisme isotrope cyclique à t^+ prennent les valeurs obtenues avant l'étape de M^{pot} ; de plus s'il n'existe pas de p^c_H à t^+ , alors les mécanismes M^m_4 et M^c_4 sont déclarés inactifs , et sinon, si le seuil $f_4^c(t^+) \ge 0$ alors M_4^c - déclaré actif à t^- - reste créé à t^+ et les variables mémoratrices à t^- prennent les valeurs obtenues avant l'étape de M^{pot} à t^- ;
 - si $p_{H}^{c}/|p_{H}^{c}|$ ne change pas de signe à cette étape, alors on réactualise les variables mémoratrices de ce mécanisme isotrope (création d'un « fils ») et si le seuil f_4^c calculé avec les contraintes à t^+ dépasse le critère initial ($r_{\'ela}^c$), alors M_4^c est déclaré actif à t^- et les variables mémoratrices à t^- prennent les valeurs obtenues

compression):

- si $p_H^c/|p_H^c|$ change de signe à cette étape, alors les variables mémoratrices de ce mécanisme isotrope à t^{+} de ce mécanisme prennent les valeurs obtenues lors de l'estimation de M^{pot} , et si le seuil f_c^4 calculé avec les contraintes à t^+ , alors les variables mémoratrices à t^- prennent les valeurs obtenues avant l'étape de M^{pot} et M_4^c est déclaré actif à t^- et reste créé à t^+ ;
- si $\left.p_{H}^{c}/\right|\left.p_{H}^{c}\right|$ ne change pas de signe depuis l'étape de $\left.M^{pot}\right.$, alors on réactualise les variables mémoratrices de ce mécanisme isotrope (création d'un « fils ») et si le

Responsable : M'JAHAD Sofia Clé : R7.01.23

Révision c173ed655b50

Date: 22/11/2019 Page: 33/67

seuil f^c_4 calculé avec les contraintes à t^+ dépasse le critère initial ($r^c_{\acute{e}la}$), alors M^c_4 est déclaré actif à t^- et reste créé à t^+ , et les variables mémoratrices à t^- prennent les valeurs obtenues à t^+ .

Remarque:

Dans le cas où $M^{act} \neq M^{pot}$, on redémarre l'algorithme de Newton local en utilisant non pas le prédicteur élastique des contraintes $\sigma^- + \mathbb{C}(\hat{p}_{\acute{e}}).\Delta \, \epsilon$, cf. [éq 2.2.1 -1], mais le résultat obtenu à la fin de l'étape échouée précédente $\sigma^+_{\acute{e}chou\acute{e}}$, cf. [éq 2.2.3 -1], associé aux valeurs obtenues des variables internes α^- . On espère ainsi éviter des bouclages intempestifs et en démarrant de manière plus « proche » de la solution cherchée, accélérer la convergence.

2.2.4 Calcul de la matrice de raideur tangente incrémentale

On établit enfin (sur demande) la matrice tangente locale \mathbb{C}^T du comportement incrémental, à l'itération globale courante, qui relie la variation de contrainte totale à la variation de déformation totale :

$$\Delta \, \sigma_{ij} = C_{ijrs}^T \, . \, \Delta \, \epsilon_{rs} = C_{ijrs} \left(p^+ \right) \, . \left(\Delta \, \epsilon_{rs} - \Delta \, \epsilon_{rs}^{\, p} \right) \tag{eq 2.2.4-1}$$

Pour cela, on exploite les conditions de « cohérence » : $\dot{f}_k^K \left(\sigma^+, \, \epsilon_v^{p+}, \, r_k^{K+} \right) = 0$ pour les mécanismes actifs, monotone ou cycliques K=m, c, les quantités intervenant dans ces expressions étant calculées à l'instant $t^+=t_i$ actuel. En combinant avec [éq 1.1.1-9], on tire :

$$\Delta \lambda_{k}^{K} = \frac{\langle \frac{\partial f_{k}^{K}}{\partial \mathbf{\sigma}} |_{Y^{i,+}} \cdot \mathbf{C}(p^{+}) \cdot \Delta \mathbf{\epsilon} \rangle}{\frac{\partial f_{k}^{K}}{\partial \mathbf{\sigma}} |_{\mathbf{Y}^{+}} \cdot \mathbf{C}(p^{+}) \cdot \mathbf{\psi}_{(k)}^{K+} - \frac{\partial f_{k}^{K}}{\partial \mathbf{\epsilon}_{y}^{p}} |_{\mathbf{Y}^{+}} \cdot \mathbf{\psi}_{(k)}^{K+} \cdot \mathbf{I} + \frac{\partial f_{k}^{K}}{\partial r_{k}^{K}} |_{\mathbf{Y}^{+}} \cdot \rho_{k}^{K+}} \geq 0 \qquad \text{ \'eq 2.2.4-2}$$

cf. [éq 1.1.2-7], [éq 1.1.2-17], [éq 1.1.3-5], [éq 1.1.3-13], les diverses dérivées étant données par [éq 7-13] à [éq 7-24]. Le signe de $\frac{\partial f_k^K}{\partial \mathbf{\sigma}}|_{Y^+}$. $\mathbf{C}(\hat{p}_{\acute{e}})$. $\Delta \dot{\mathbf{\epsilon}}$ est comparé à une tolérance de référence (R8PREM).

On en déduit l'expression de la matrice tangente incrémentale (option ${\tt FULL_MECA}$), sur les mécanismes de M^{act} :

$$\mathbf{C}_{ijrs}^{T} = \mathbf{C}_{ijlt}\left(p^{+}\right).\left|\mathbf{I}_{rslt} - \sum_{M^{act}} \frac{\frac{\partial f_{k}^{K}}{\partial \mathbf{\sigma}}|_{\mathbf{Y}^{+,n}}.\mathbf{C}_{pqrs}\left(p^{+}\right).\left(\mathbf{\Psi}_{lt}\right)_{(k)}^{K+}}{\frac{\partial f_{k}^{K}}{\partial \mathbf{\sigma}}|_{\mathbf{Y}^{+}}.\mathbf{C}\left(p^{+}\right).\mathbf{\Psi}_{(k)}^{K+} - \frac{\partial f_{k}^{K}}{\partial \varepsilon_{v}^{p}}|_{\mathbf{Y}^{+}}.\mathbf{\Psi}_{(k)}^{K+}.I + \frac{\partial f_{k}^{K}}{\partial r_{k}^{K}}|_{\mathbf{Y}^{+}}.\rho_{k}^{K+}}\right|$$
 éq 2.2.4-3

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 34/67 Clé : R7.01.23 Révision

c173ed655b50

La matrice tangente incrémentale est ainsi établie analytiquement, cf. [§ 2.4], les diverses dérivées présentes dans [éq 2.2.3-3] étant calculés au [§ 7]. Le déterminant de la matrice tangente incrémentale $\det \left(\begin{array}{c} C_{ijrs}^T \end{array} \right)$, en option <code>FULL_MECA</code>, est stockée parmi les variables internes : <code>VARI 33</code>, cf. [§ 3.1].

Remarque:

L'évaluation de la matrice tangente incrémentale à l'aide d'une technique de perturbations (par différences finies, à titre de vérification) n'est pas possible à cause du caractère multi-mécanisme du modèle de Hujeux : l'activation effective des mécanismes n'étant pas un processus différentiable.

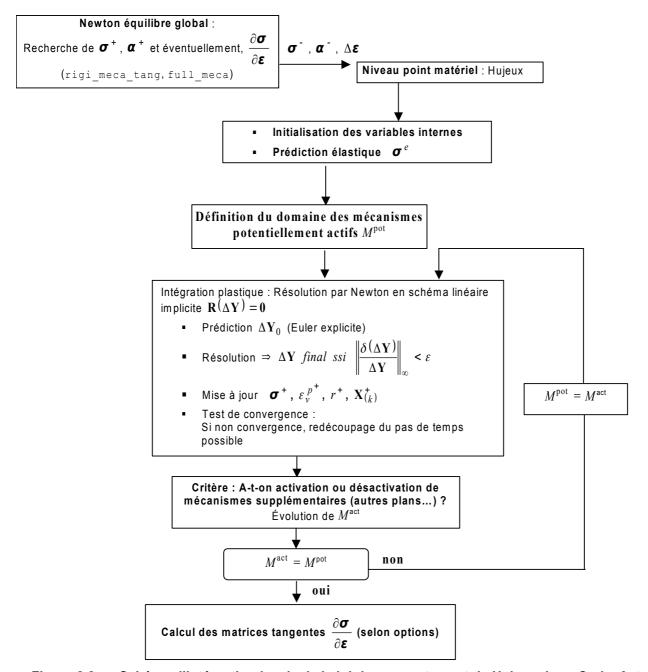


Figure 2.2-a : Schéma d'intégration locale de la loi de comportement de Hujeux dans Code_Aster.

Titre : Loi de comportement cyclique de Hujeux pour les so[...]
Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 35/67 Clé : R7.01.23 Révision

c173ed655b50

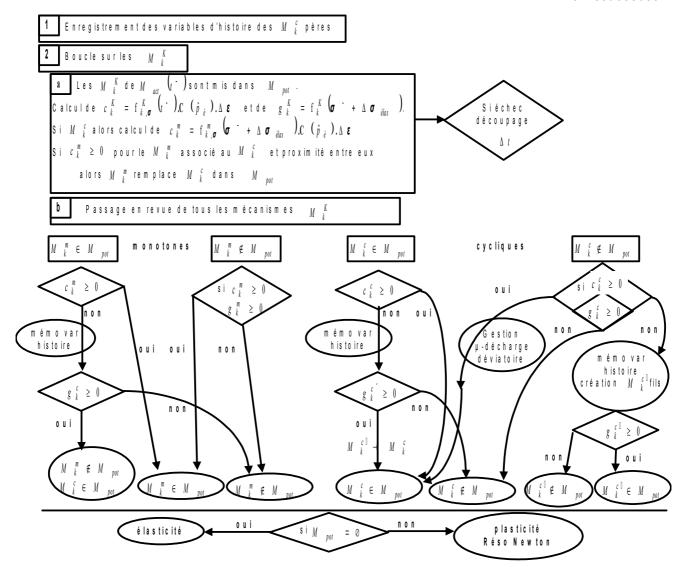


Figure 2.2-b : Algorithme d'évolution du domaine M^{pot} des mécanismes potentiellement actifs.

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 36/67 Clé : R7.01.23 Révision

c173ed655b50

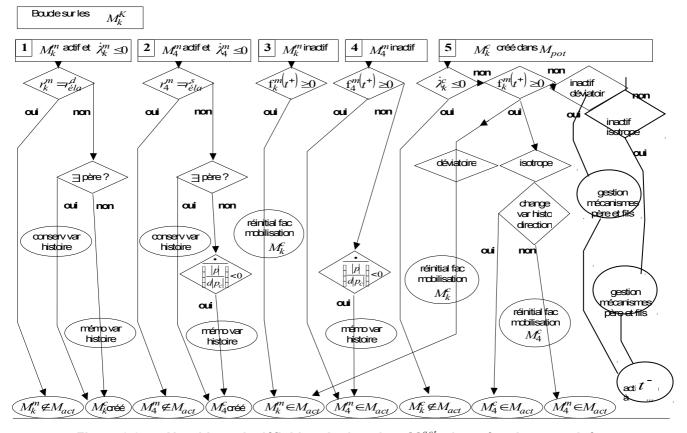


Figure 2.2-c : Algorithme de définition du domaine M^{act} des mécanismes activés.

2.3 Opérateur tangent en vitesse : option RIGI_MECA_TANG

Pour l'option <code>RIGI_MECA_TANG</code> , qui est utilisée lors de la prédiction globale, appelée à la première itération d'un nouvel incrément de charge $\Delta \hat{\mathbf{L}} \begin{pmatrix} t_i \end{pmatrix}$, l'opérateur tangent global, noté $\mathbf{K_{i-1}}$, est calculé à partir des résultats connus à l'instant $t^- = t_{i-1}$ [bib3].

L'opérateur tangent global est assemblé à partir des contributions de la matrice tangente en chaque point de Gauss, dite « en vitesses » :

$$\dot{\sigma}_{ij} = C_{ijrs}^{elp} \cdot \dot{\epsilon}_{rs}$$
 éq 2.3-1

Comme la loi de comportement est élastique non linéaire [éq 1.1.1-11], on construit un opérateur tangent élastique non linéaire.

• Si à l'état précédent le tenseur des contraintes n'est à la frontière d'aucun seuil plastique, la prédiction élastique $\sigma_{ij\acute{e}}^+$ s'écrit selon [éq 2.2.1-1], à l'aide de la pression de confinement estimée $\hat{p}_{\acute{e}}$ [éq 2.2.1-2].

Dans ce cas, on construit la matrice \mathbf{K}_{i-1} à l'aide du tenseur d'élasticité calculé pour la pression de confinement $\hat{p_e}$. Ce choix permet de limiter le risque d'avoir une matrice produisant des prédictions de contraintes trop éloignées des valeurs espérées, du fait de la forme non linéaire exponentielle de la loi élastique [éq 1.1.1-11].

Titre : Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 37/67 Clé: R7.01.23 Révision

c173ed655b50

♦ Si à l'état précédent le tenseur des contraintes est sur la frontière d'un seuil plastique , on exploite les conditions de « cohérence » : $f_k^K (\sigma^-, \epsilon_v^{p-}, r_k^{K-}) = 0$, pour les mécanismes actifs, monotone ou cycliques K=m,c , les quantités intervenant dans ces expressions étant calculées à l'instant $t^- = t_{i-1}$ précédent. En combinant avec [éq 1.1.1 -9], on obtient l'expression des multiplicateurs plastiques λ_k^K :

$$\dot{\boldsymbol{\lambda}}_{k}^{K} = \frac{\left\langle \frac{\partial \mathbf{f}_{k}^{K}}{\partial \boldsymbol{\sigma}} \middle|_{\hat{\mathbf{Y}}^{-}} \cdot \mathbf{C} \left(\hat{\boldsymbol{p}}_{\acute{e}} \right) \cdot \dot{\boldsymbol{\epsilon}} \right\rangle_{+}}{\left. \frac{\partial \mathbf{f}_{k}^{K}}{\partial \boldsymbol{\sigma}} \middle|_{\hat{\mathbf{Y}}^{-}} \cdot \mathbf{C} \left(\hat{\boldsymbol{p}}_{\acute{e}} \right) \cdot \boldsymbol{\Psi}_{(k)}^{K-} - \frac{\partial f_{k}^{K}}{\partial \boldsymbol{\epsilon}_{v}^{P}} \middle|_{\hat{\mathbf{Y}}^{-}} \cdot \boldsymbol{\Psi}_{(k)}^{K-} \cdot \mathbf{I} + \frac{\partial f_{k}^{K}}{\partial r_{k}^{K}} \middle|_{\hat{\mathbf{Y}}^{-}} \cdot \boldsymbol{\rho}_{k}^{K-}} \right. \geq 0 \qquad \text{ éq 2.3-2}$$

cf. [éq 1.1.2-7], [éq 1.1.2-17], [éq 1.1.3-6], [éq 1.1.3-13], les diverses dérivées étant données en annexe par [éq 7-13] à [éq 7-24].

On en déduit l'expression de la matrice tangente « en vitesses », sur les mécanismes de M^{act} :

$$C_{\mathit{ijrs}}^{\mathit{elp}} = C_{\mathit{ijlt}} \left(\hat{p}_{\acute{e}} \right) \cdot \left| I_{\mathit{rslt}} - \sum_{M^{\mathit{act}}} \frac{\frac{\partial \left. f_{k}^{K} \right|}{\partial \left. \sigma\right|_{\hat{\mathbf{Y}}^{-}}} \cdot C_{\mathit{pqrs}} \left(\left. \hat{p}_{\acute{e}} \right) \cdot \left(\mathbf{\Psi}_{\mathit{lt}} \right)_{(k)}^{K-}}{\frac{\partial \left. f_{k}^{K} \right|}{\partial \left. \sigma\right|_{\hat{\mathbf{Y}}^{-}}} \cdot \mathbf{C} \left(\left. \hat{p}_{\acute{e}} \right) \cdot \mathbf{\Psi}_{(k)}^{K-} - \frac{\partial \left. f_{k}^{K} \right|}{\partial \left. \varepsilon_{\mathit{v}}^{\mathit{p}} \right|_{\hat{\mathbf{Y}}^{-}}} \cdot \mathbf{I} + \frac{\partial \left. f_{k}^{K} \right|_{\hat{\mathbf{Y}}^{-}} \cdot \rho_{k}^{K-}}{\partial \left. r_{k}^{K} \right|_{\hat{\mathbf{Y}}^{-}}} \right|$$
 éq 2.3-3

Remarque:

On doit noter que le caractère non associé des lois d'écoulement [éq 1.1.2-3] et [éq 1.1.2-14] des mécanismes déviatoriques fait perdre les symétries majeures dans la matrice tangente. De même, ces lois d'écoulement introduisent des couplages entre les composantes $ec{C}^{elp}_{iijj}$ et les composantes C_{klkl}^{elp} pour k
eq l , ce qui est étroitement lié à la dilatance.

Remarque:

On doit noter aussi que, comme le tenseur d'élasticité $\mathbf{C}(\hat{p}_{\hat{e}})$ est isotrope, les situations de chargement où seules les directions diagonales sont sollicitées, alors les tenseurs $(\Psi_{_{1t}})_{(k)}^K$ ne comportent que des termes diagonaux, et donc le tenseur d'élasticité tangente $\mathbb{C}^{ ext{elp}}$ ne comporte pas de couplage entre termes diagonaux et termes extra-diagonaux.

2.4 Opérateur tangent incrémental : option FULL MECA

Les options RAPH MECA et FULL MECA sont utilisées dans les itérations de correction de l'algorithme de Newton appliqué à la résolution de l'équilibre global à l'échelle de la structure. L'option RAPH MECA se limite au traitement des itérations de correction de Newton sans mettre à jour l'opérateur tangent global.

L'option <code>FULL_MECA</code> fournit la réactualisation de l'opérateur tangent global K_i^n à chaque itération globale (sur demande). Il est construit en assemblant à chaque point de Gauss la matrice tangente incrémentale C_{iirs}^T établie en [éq 2.2.4-3], avec les champs obtenus à la fin de l'itération globale i:

$$\Delta \sigma_{ij} = C_{ijrs}^T . \Delta \varepsilon_{rs} = C_{ijrs} . \left(\Delta \varepsilon_{rs} - \Delta \varepsilon_{rs}^p \right)$$
 éq 2.4-1

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 38/67 Clé : R7.01.23 Révision

Révision c173ed655b50

À convergence des itérations globales, l'option <code>FULL_MECA</code> met à jour les contraintes et les variables internes, cf. [R5.03.01].

Remarque: L'emploi de l'opérateur tangent incrémental lors de l'appel de l'option <code>FULL_MECA</code> est limité uniquement aux schémas d'intégration 'NEWTON', 'NEWTON_PERT' et 'NEWTON_RELI'. Le schéma d'intégration 'SPECIFIQUE' utilise l'opérateur tangent en vitesse présenté dans la section précédente.

La construction de l'opérateur tangent incrémental, $M_c = \frac{\partial \, \sigma}{\partial \, \epsilon}$, est basée sur l'exploitation de

données préalablement évaluées, c'est à dire l'opérateur Jacobien, $J = \frac{d \mathbf{R}}{d \left(\Delta \mathbf{Y} \right)} |_{\Delta \mathbf{Y}_{i}}$, décrit au §2.2.2.

L'exploitation des données est réalisée suivant la logique suivante.

Le système $\mathbf{R}(\Delta \mathbf{Y}) = 0$ est vérifié en fin d'incrément. Pour une petite variation de \mathbf{R} , en considérant cette fois ϵ comme une variable du système, le système reste à l'équilibre et donc on vérifie $d \mathbf{R} = 0$. Par différenciation, on obtient alors :

$$\frac{\partial R}{\partial \Delta \, \epsilon} d \left(\Delta \, \epsilon \right) + \frac{\partial R}{\partial \Delta \, \sigma} d \left(\Delta \, \sigma \right) + \frac{\partial R}{\partial \Delta \, \lambda} d \left(\Delta \, \lambda \right) + \frac{\partial R}{\partial \Delta \, \xi_n} d \left(\Delta \, \xi_p \right) + \frac{\partial R}{\partial \Delta \, \xi_m} d \left(\Delta \, \xi_{pp} \right) = 0$$

On ré-écrit le système en mettant les termes en ∈ dans le membre de droite :

$$\frac{\partial R}{\partial \Delta \, \epsilon} d \left(\Delta \, \epsilon \right) + \frac{\partial R}{\partial \Delta \, \sigma} d \left(\Delta \, \sigma \right) + \frac{\partial R}{\partial \Delta \, \lambda} d \left(\Delta \, \lambda \right) + \frac{\partial R}{\partial \Delta \, \xi_p} d \left(\Delta \, \xi_p \right) = - \frac{\partial R}{\partial \Delta \, \xi_{vp}} d \left(\Delta \, \xi_{vp} \right)$$

Ce système peut alors s'écrire sous la forme suivante :

$$J \cdot d\left(\Delta Y\right) = -\frac{\partial R}{\partial \left(\Delta \,\epsilon\right)} d\left(\Delta \,\epsilon\right) \text{ avec } \frac{\partial R}{\partial \left(\Delta \,\epsilon\right)} = \left[-C^e(\sigma), 0, 0, 0\right]$$

Finalement, on obtient : $J \cdot d(\Delta Y) = [C^e(\sigma): \Delta \in 0, 0, 0]$

On écrit ensuite le système par blocs en séparant $d(\Delta\sigma)$ des autres variables $Z = [\Delta\lambda, \Delta\xi_p, \Delta\xi_{vp}]$, ce qui donne :

$$\begin{bmatrix} J_{\sigma\sigma} & J_{\sigma Z} \\ J_{Z\sigma} & J_{ZZ} \end{bmatrix} \cdot \begin{pmatrix} \Delta \sigma \\ Z \end{pmatrix} = \begin{pmatrix} C^e(\sigma)d(\Delta \epsilon) \\ 0 \end{pmatrix}$$

L'expression de l'opérateur tangent devient :

$$\boldsymbol{M}_{c} = \frac{\partial \, \boldsymbol{\sigma}}{\partial \, \boldsymbol{\epsilon}} = \frac{d \, (\Delta \, \boldsymbol{\sigma})}{d \, (\Delta \, \boldsymbol{\epsilon})} = \left[\boldsymbol{J}_{\sigma \sigma} - \boldsymbol{J}_{\sigma \, \boldsymbol{Z}} (\boldsymbol{J}_{ZZ})^{-1} \boldsymbol{J}_{Z\sigma} \right]^{-1} \boldsymbol{C}^{e}(\boldsymbol{\sigma})$$

Remarque : La matrice Jacobienne n'étant pas symétrique, l'opérateur tangent $\,M_{\,c}\,$ ne l'est pas non plus.

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 39/67 Clé : R7.01.23 Révision

Révision c173ed655b50

3 Implantation dans Code_Aster

3.1 Variables internes

Un certain nombre de « variables internes » du modèle au sens de $Code_Aster$ sont créées et stockées. Le tenseur des déformations plastiques ϵ^p n'est pas stocké car il est obtenu par calcul en post-traitement à partir des contraintes et des déformations totales. Les valeurs des variables internes aux points de Gauss (VARI ELGA) sont pour toutes les modélisations :

VARI_1	r_1^m (facteur de mobilisation du mécanisme déviatoire monotone, $k\!=\!1$)				
VARI_2	r_2^m (facteur de mobilisation du mécanisme déviatoire monotone, $k{=}2$)				
VARI_3	r_3^m (facteur de mobilisation du mécanisme déviatoire monotone, $k{=}3$)				
VARI_4	r_4^m (facteur de mobilisation du mécanisme de consolidation monotone)				
VARI_5	r_1^c (facteur de mobilisation du mécanisme déviatoire cyclique, $k=1$)				
VARI_6	r_2^c (facteur de mobilisation du mécanisme déviatoire cyclique, $k=2$)				
VARI_7	r_3^c (facteur de mobilisation du mécanisme déviatoire cyclique, $k=3$)				
VARI_8	r_4^c (facteur de mobilisation du mécanisme de consolidation cyclique)				
VARI_9 à VARI_12	variables mémoratrices $(X_{(1)}^H)_{1111}$, $\sqrt{2}(X_{(1)}^H)_{1212}$, $-(S_{(1)H}^c)_{1111}/ S_{(1)H}^c _{VM}^{2D}$, $-\sqrt{2}(S_{(1)H}^c)_{1212}/ S_{(1)H}^c _{VM}^{2D}$ (normale entrante), pour le mécanisme déviatoire cyclique du plan $k=1$				
VARI_13 à VARI_16	idem pour le mécanisme déviatoire cyclique du plan $k=2$				
VARI_17 à VARI_20	idem pour le mécanisme déviatoire cyclique du plan $k\!=\!3$				
VARI_21	variable mémoratrice discontinue $p_H/\left(d\cdot P_{c\theta}\cdot e^{-\beta\epsilon_{vH}^{p}}\right)$ du mécanisme de consolidation				
VARI_22	variable mémoratrice discontinue $p_H^c/ p_H^c $ de normale à la surface de charge du mécanisme de consolidation				
VARI 23	déformation plastique volumique ϵ_v^p				
VARI_24 à VARI_27	· ·				
VARI_28 à VARI_31					
VARI_32	densité normalisée pour le travail du second ordre $\dot{\sigma}\dot{\epsilon}$ (obtenu par discrétisation : $\Delta \sigma\Delta \epsilon/\ \Delta \sigma\ \ \Delta \epsilon\ $)				
VARI_33	Déterminant de la matrice tangente $\frac{d \sigma}{d \epsilon}$ }				
VARI_34	Indicateur d'erreur de la solution $\sum_{i=1}^{ITER_INTE_PAS} \sum_{k \in Actif} f_k^{m,c} (\sigma^+, \epsilon_v^p, r_k^+)$				
VARI_35	Indicateur d'erreur de la solution explicite $\frac{N_{\text{échec}}}{ITER_INTE_PAS}$ (en %)				
VARI_36 à VARI 41	coordonnées vectorielles du point de tangence $(X_{(1)}^H)_{1111}$, $\sqrt{2}(X_{(1)}^H)_{1212}$ du				
AULT_41	mécanisme « père » à la surface de charge du mécanisme déviatoire du plan $k=1$; coordonnées vectorielles de la normale entrante à la surface de charge du mécanisme				

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 40/67 Clé: R7.01.23

Révision

c173ed655b50

	« père » du mécanisme déviatoire ; rayon du seuil déviatoire atteint par la surface de charge avant la décharge de ce mécanisme déviatoire
VARI_42 à VARI_47	idem pour le mécanisme déviatoire cyclique du plan $k\!=\!2$
VARI_48 à VARI_50	idem pour le mécanisme déviatoire cyclique du plan $k\!=\!3$

L'indicateur d'état VARI 34 des mécanismes actifs après convergence est un octet (8 digits) obtenu par système binaire. Chaque digit est associé à un mécanismes plastique, en affectant la valeur 1 pour un mécanisme actif et la valeur 0 pour un mécanisme non sollicité.

Ceci permet de visualiser facilement avec un simple scalaire les mécanismes actifs. Par exemple, si VARI 34 = 10000010, alors les critères actifs sont : déviatoire XZ monotone (10^1) et isotrope cyclique (10^7).

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 41/67 Clé : R7.01.23 Révision

Révision c173ed655b50

4 Fonctionnalités et vérification

La loi de HUJEUX (comportement HUJEUX pour le mot-clé COMPORTEMENT) est utilisable dans Code_Aster avec différentes modélisations :

- version classique: 3D, D PLAN,
- éléments finis sous-intégrés : 3D SI, D PLAN SI,
- couplée avec les modèles de THM (cf. [R7.01.11]) : 3D_HMD, D_PLAN_HMD...

Le modèle de HUJEUX est également utilisable dans *Code_Aster* avec différents types de schémas d'intégration (ALGO_INTE): 'NEWTON', 'NEWTON_RELI', 'NEWTON_PERT', 'SEMI_EXPLICITE', 'BASCULE EXPLICITE', 'SPECIFIQUE'.

Attention:

La validité de la formulation 3D de la loi Hujeux parait discutable (cf. **Annexe 3**). Il convient donc d'adopter une certaine prudence quand on l'utilise dans ce cadre.

Voici la liste des cas de validation disponibles :

VOICE IN HOLO GOO GOO	ac validation disponit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SSNV197 abcd	[V6.04.197]	essai triaxial drainé (mécanique pure) avec la loi de Hujeux ; 2 pressions de pré-consolidation : 50 et 200 kPa et introduction de paramètres pour permettre une comparaison avec $Gefdyn$. Le cas-test SSNV197D est traité avec une rotation du repère local de 45° par rapport à la verticale (direction de chargement). On compare la solution obtenue à un calcul où le maillage est tourné.
SSNV204 abc	[V6.04.204]	essai de consolidation drainée (mécanique pure) avec la loi de Hujeux; intérêt: tester la consolidation puis le cyclique en conditions « mécanique pure » représentatives. SSNV204b: compression isotrope d'un matériau orthotrope élastique. On dégénère la loi de Hujeux en loi élastique orthotrope, et on valide par rapport à un calcul élastique vrai. SSNV204c: on réalise un chargement purement isotrope conduisant à la mise en traction du sol. On valide ainsi l'activation des mécanismes plastiques de traction.
SSNV205 a	[V6.04.205]	essai de cisaillement cyclique drainé contrôlé en déformation. Intérêt : tester le cyclique en conditions « mécanique pure » représentatives. Comparaison avec <i>Gefdyn</i> .
SSNV207 a	[V6.04.207]	cisaillement cyclique contrôlé en contraintes avec micro- décharge.
SSNV208 a	[V6.04.208]	Cas test biaxial en conditions drainées sur sable d'Hostun dense (D_PLAN). Calcul lors du post-traitement du critère de Rice. (option INDL_ELGA)
WTNV132 abcde	[V7.31.132]	Test de construction par couches en conditions drainées « mécanique pure » avec la loi de Hujeux. WTNV132b: Simulation identique à la précédente surchargée d'une modélisation D_PLAN_DIL. WTNV132c: Simulation identique à la modélisation A avec une résolution globale en matrice sécante. WTNV132d: Simulation identique à la modélisation A avec modélisation D_PLAN_HM_SI. WTNV132e: Simulation identique à la modélisation C avec modélisation D_PLAN_HM_SI.
WTNV133 abc	[V7.31.133]	essai triaxial en conditions non drainées avec la loi de

Responsable : M'JAHAD Sofia

Date: 22/11/2019 Page: 42/67

Clé: R7.01.23 Révision

c173ed655b50

		Hujeux ; intérêt : tester la consolidation puis le cyclique en conditions hydromécaniques représentatives.
WTNV134 ab	[V7.31.134]	essai triaxial en conditions non drainées cyclique hydromécanique. Comparaison avec <i>Gefdyn</i> . WTNV134b: chargement appliqué identique utilisant l'opérateur SIMU_POINT_MAT
WDNP101abcd	[V7.34.101]	sollicitation sismique d'une construction par couches avec la loi de Hujeux, modélisation D_PLAN_HM. WDNP101b: Simulation identique sur base physique et non modale comme le cas précédent. WDNP101C,D: Problème adimensionné et utilisant les modélisations D_PLAN_HM_SI et 3D_HM_SI

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 43/67 Clé : R7.01.23 Révision

Révision c173ed655b50

5 Bibliographie

- «Algorithme non linéaire quasi-statique ». Documentation de référence de Code_Aster [R5.03.01].
- 2) J. LEMAITRE, J.L. CHABOCHE: Mécanique des matériaux solides, Dunod 1985.
- 3) A. MODARESSI: Modélisation des milieux poreux sous chargements complexes, Habilitation à Diriger des Recherches, INPG, 2003.
- 4) J.C. HUJEUX : Une loi de comportement pour le chargement cyclique des sols. Génie Parasismique, Presses ENPC, Davidovici V. & al., pages 287-302, 1985.
- AUBRY D., J.C. HUJEUX, F. LASSOUDIÈRE & Y. MEIMON: "A double memory model with multiple mechanisms for cyclic soil behaviours", Int. Symp. Num. Models in Geomechanics, Zürich, vol. 1, pp 3-13, (1982).
- « Intégration explicite des relations de comportement non linéaire ». Documentation de référence de Code_Aster [R5.03.14].
- 7) ROSCOE K.H., et al.: On the yielding of soils. Géotechnique, vol.8, pp.22-52, 1958.
- « Loi de comportement CAM-CLAY ». Documentation de référence de Code_Aster [R7.01.14].
- 9) S. COSTA D'AGUIAR. Numerical Modelling of Soil-Pile Load Transfer Mechanisms. Thèse de Doctorat, ECP/LMSSMat, 2008.
- 10) S.SICA, L.PAGANO, A. MODARESSI: Influence of past loading history on the seismic response of earth dams. Computers and Geotechnics 35, pp. 61–85, 2008.
- F. LOPEZ-CABALLERO. Influence du comportement non linéaire du sol sur les mouvements sismiques induits dans les géo-structures. Thèse de Doctorat, ECP/LMSSMat.
- 12) E. PICCUEZU. Lois de comportement en géomécanique Modélisation, mise en œuvre, identification. Thèse de Doctorat, ECP/LMSSMat, 1991.

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 44/67 Clé: R7.01.23 Révision

c173ed655b50

6 analytique de la calcul Annexe matrice tangente d'intégration locale

On doit résoudre par une méthode de Newton le système d'équations non linéaires locales suivantes : $\mathbf{R}(\Delta \mathbf{Y}) = 0$, écrites à la fin de l'incrément étudié, où $\Delta \mathbf{Y} = \left(\Delta \mathbf{\sigma}_{ii}$, $\Delta \epsilon_{v}^{p}$, Δr_{k}^{K} , $\Delta \left(\Delta \lambda_{k}^{K}\right)\right)$. Ceci s'écrit :

$$\begin{vmatrix} \sigma_{ij}^{+} - \sigma_{ij}^{-} - C_{ijrs}(\sigma^{+}) \cdot \left(\Delta \varepsilon_{rs} - \sum_{K=m,c} \left(\sum_{k=1}^{3} \Delta \lambda_{k}^{K} (\Psi_{rs})_{(k)}^{K_{|\sigma|}} \right) - \frac{p}{3|p|} \cdot \left(\Delta \lambda_{4}^{m} + \frac{\Delta \lambda_{4}^{c} p^{c}}{|p^{c}|} \right) \mathbf{I}_{rs} \end{vmatrix} = 0 \quad \left(LE_{ij} \right) \\ \varepsilon_{v}^{p+} - \varepsilon_{v}^{p-} + \sum_{K=m,c} \left(\sum_{k=1}^{3} \Delta \lambda_{k}^{K} \zeta_{0} \cdot \zeta \left(r_{k}^{K} + r_{\acute{e}la}^{dK} \right) \cdot \left(\sin \psi + \frac{q_{k}^{K+}}{p_{k}^{+}} \right) \right) - \frac{p}{|p|} \cdot \left(\Delta \lambda_{4}^{m} + \frac{\Delta \lambda_{4}^{c} p^{c}}{|p^{c}|} \right) = 0 \quad (LEVP) \\ r_{k}^{K+} - r_{k}^{K-} - \Delta \lambda_{k}^{K} \frac{\left(1 - r_{k}^{K+} - r_{\acute{e}la}^{dK} \right)^{2}}{a_{c} + \zeta \left(r_{k}^{K+} + r_{\acute{e}la}^{dK} \right) \cdot \left(a_{m} - a_{c} \right)} \gamma_{k}^{K+} = 0 \quad K = m, c \quad k = 1, 2, 3 \quad (LR.1) \\ r_{4}^{K+} - r_{4}^{K-} - \Delta \lambda_{4}^{K} \frac{\left(1 - r_{4}^{K+} - r_{\acute{e}la}^{SK} \right)^{2}}{c_{K}} \left(\frac{P_{r\acute{e}f}}{P_{c}(\varepsilon_{v}^{p+})} \right) = 0 \quad K = m, c \quad (LR.2) \\ q_{k}^{K+} + Mp_{k}^{+} \left(1 - b_{h} \cdot \ln \left(\frac{p_{k}^{+}}{P_{c0} \cdot e^{-\beta \varepsilon_{v}^{p+}}} \right) \right) \cdot \left(r_{k}^{K+} + r_{\acute{e}la}^{dK} \right) = 0 \quad K = m, c \quad (LF.1) \\ |p^{K+}| + d \cdot P_{c0} \cdot e^{-\beta \varepsilon_{v}^{p+}} \cdot \left(r_{4}^{K+} + r_{\acute{e}la}^{SK} \right) = 0 \quad K = m, c \quad (LF.2)$$

$$\text{avec}: \ \boldsymbol{\gamma}_{k}^{m} = 1 \ \text{ et } \ \boldsymbol{\gamma}_{k}^{c} = \frac{2\,q_{k}^{c}.\|\mathbf{S}_{(k)H}^{c}\|_{V\!M}^{2\mathrm{D}}}{2\,q_{k}^{c}.\|\mathbf{S}_{(k)H}^{c}\|_{V\!M}^{2\mathrm{D}} - \mathbf{S}_{(k)H}^{c}.\mathbf{S}_{(k)}^{c}} \ \text{, cf. [\'eq 1.1.2-5] et [\'eq 1.1.2-15]}.$$

Il faut donc établir le calcul de la matrice tangente $\left.\frac{d\,\mathbf{R}}{d\,|\,\Lambda\,\mathbf{V}|}\right|_{\Lambda,\Lambda}$, ce qui nécessite le calcul analytique des différentes dérivées suivantes par rapport à $\mathbf{Y} = [\boldsymbol{\sigma}_{ii}, \, \boldsymbol{\varepsilon}_{v}^{P}, \, r_{k}^{K}, \, \Delta \, \lambda_{k}^{K}]$:

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 45/67 Clé : R7.01.23 Révision c173ed655b50

$$\frac{d\,\mathbf{R}}{d\,|\Delta\mathbf{Y}|}|_{\Delta\mathbf{Y}} = \begin{vmatrix} \frac{\partial\,LE_{ij}}{\partial\,\boldsymbol{\sigma}_{rs}} & \frac{\partial\,LE_{ij}}{\partial\,\varepsilon_{v}^{p}} & \frac{\partial\,LE_{ij}}{\partial\,r_{k}^{p}} & \frac{\partial\,LE_{ij}}{\partial\,(\Delta\,\lambda_{k}^{K})} \\ \frac{\partial\,LEVP}{\partial\,\boldsymbol{\sigma}_{rs}} & \frac{\partial\,LEVP}{\partial\,\varepsilon_{v}^{p}} & \frac{\partial\,LEVP}{\partial\,r_{k}^{K}} & \frac{\partial\,LEVP}{\partial\,(\Delta\,\lambda_{k}^{K})} \\ \frac{\partial\,LR\,.1}{\partial\,\boldsymbol{\sigma}_{rs}} & \frac{\partial\,LR\,.1}{\partial\,\varepsilon_{v}^{p}} & \frac{\partial\,LR\,.1}{\partial\,r_{k}^{K}} & \frac{\partial\,LR\,.1}{\partial\,(\Delta\,\lambda_{k}^{K})} \\ \frac{\partial\,LR\,.2}{\partial\,\boldsymbol{\sigma}_{rs}} & \frac{\partial\,LR\,.2}{\partial\,\varepsilon_{v}^{p}} & \frac{\partial\,LR\,.2}{\partial\,r_{k}^{F}} & \frac{\partial\,LR\,.2}{\partial\,(\Delta\,\lambda_{k}^{K})} \\ \frac{\partial\,LF\,.1}{\partial\,\boldsymbol{\sigma}_{rs}} & \frac{\partial\,LF\,.1}{\partial\,\varepsilon_{v}^{p}} & \frac{\partial\,LF\,.1}{\partial\,r_{k}^{F}} & \frac{\partial\,LF\,.1}{\partial\,(\Delta\,\lambda_{k}^{K})} \\ \frac{\partial\,LF\,.2}{\partial\,\boldsymbol{\sigma}_{rs}} & \frac{\partial\,LF\,.2}{\partial\,\varepsilon_{v}^{p}} & \frac{\partial\,LF\,.2}{\partial\,r_{k}^{F}} & \frac{\partial\,LF\,.2}{\partial\,(\Delta\,\lambda_{k}^{K})} \\ \end{pmatrix}$$

Ces dérivées sont déterminées dans les [§ 6.1] à [§ 6.6]. Elles exploitent notamment les résultats établis par [éq 7-13] à [éq 7-24].

Remarque:

Tous les mécanismes apparaissent dans la sommation dans [éq 6 -1], mais en pratique seuls figurent les mécanismes actifs.

Les directions d'écoulement plastique $\left| \mathbf{\Psi} \right|_k^K$ sont exprimées après injection dans le repère global cartésien sous la forme d'un tenseur d'ordre 2.

6.1 Dérivées de l'équation d'état

Elles proviennent de l'équation d'état [éq 1.1.1-9] et de la déformation plastique [éq 1.1.5-1] :

$$\sigma_{ij}^{+} - \sigma_{ij}^{-} - C_{ijrs}(\boldsymbol{\sigma}^{+}) \cdot \left(\Delta \, \boldsymbol{\varepsilon}_{rs} - \sum_{K=m,c} \left(\sum_{k=1}^{3} \Delta \, \lambda_{k}^{K} (\boldsymbol{\Psi}_{rs})_{(k)}^{K_{[\sigma^{+}]}} \right) - \frac{p}{3 |p|} \cdot \left(\Delta \, \lambda_{4}^{m} + \frac{\Delta \, \lambda_{4}^{c} \, p^{c}}{|p^{c}|} \right) \, \boldsymbol{I}_{rs} \right) = 0 \quad \left(LE_{ij} \right)$$

$$C_{ijrs}^{+} = C_{ijrs}^{0} \cdot \left(\frac{p}{P_{r\acute{e}f}}\right)^{n} \quad \text{et} \qquad \begin{aligned} \left(\boldsymbol{\Psi}_{(k)}^{m}\right)_{rs} &= \frac{\left(\boldsymbol{\mathbf{S}}_{(k)}\right)_{rs}}{2q_{k}} - \frac{\boldsymbol{\zeta}_{0} \cdot \boldsymbol{\zeta}\left(\boldsymbol{r}_{k}^{m} + \boldsymbol{r}_{\acute{e}la}^{d}\right)}{2} \cdot \left(\sin\psi + \frac{q_{k}}{p_{k}}\right) \cdot \left(\boldsymbol{\mathbf{I}}_{(k)}\right)_{rs} \\ \left(\boldsymbol{\Psi}_{(k)}^{c}\right)_{rs} &= \frac{\left(\boldsymbol{\mathbf{S}}_{(k)}^{K}\right)_{rs}}{2q_{k}^{c}} - \frac{\boldsymbol{\zeta}_{0} \cdot \boldsymbol{\zeta}\left(\boldsymbol{r}_{k}^{c} + \boldsymbol{r}_{\acute{e}la}^{dc}\right)}{2} \cdot \left(\sin\psi + \frac{\boldsymbol{\mathbf{S}}_{(k)} \cdot \boldsymbol{\mathbf{S}}_{(k)}^{c}}{2p_{k}q_{k}^{c}}\right) \cdot \left(\boldsymbol{\mathbf{I}}_{(k)}\right)_{rs} \end{aligned}$$
 éq 6.1-1

Calcul des composantes $\frac{\partial LE_{ij}}{\partial \sigma_{m}}$ (tenseur d'ordre 4) :

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 46/67 Clé : R7.01.23 Révision

c173ed655b50

$$\frac{\partial LE_{ij}}{\partial \sigma_{rs}^{+}} = \frac{\partial \sigma_{ij}^{+}}{\partial \sigma_{rs}^{+}} + \frac{\partial C_{ijkl}^{+}}{\partial \sigma_{rs}^{+}} \cdot \left(\Delta \varepsilon_{kl} - \sum_{K=m,c} \left(\sum_{t=1}^{3} \Delta \lambda_{t}^{K} \left(\mathbf{\Psi}_{(t)}^{K} \right)_{kl} \left(\sigma^{+} \right) \right) - \frac{p}{3|p|} \cdot \left(\Delta \lambda_{4}^{m} + \frac{\Delta \lambda_{4}^{c} p^{c}}{|p^{c}|} \right) I_{kl} \right) \\ - C_{ijkl}^{+} \cdot \sum_{K=m,c} \left(\sum_{t=1}^{3} \Delta \lambda_{t}^{K} \frac{\partial \left(\mathbf{\Psi}_{(t)}^{K} \right)_{kl}}{\partial \sigma_{rs}^{+}} \right)$$
 éq 6.1-2

la contribution des mécanismes de consolidation étant nulle dans le dernier terme. L'expression des différents termes mis en jeu dans le calcul de cette dérivée est, en exploitant les résultats [éq 7-6] et [éq 7-7] :

$$\frac{\partial C_{ijkl}^{+}}{\partial \sigma_{rs}^{+}} = \frac{\partial C_{ijkl}^{+}}{\partial p} \cdot \frac{\partial p}{\partial \sigma_{rs}^{+}} = \frac{n}{P_{r\acute{e}f}} \cdot \left(\frac{p}{P_{r\acute{e}f}}\right)^{n-1} \cdot C_{ijkl}^{0} \cdot \frac{1}{3} \cdot I_{rs} = \frac{n}{3p} \cdot C_{ijkl}^{+} \cdot I_{rs} \quad \text{, cf. [\'eq 6.1-2] };$$

$$\frac{\partial \left(\mathbf{Y}_{(t)}^{m}\right)_{kl}}{\partial \sigma_{rs}^{+}} = \frac{1}{2q_{t}} \cdot \frac{\partial \left(\mathbf{S}_{(t)}\right)_{kl}}{\partial \sigma_{rs}^{+}} - \frac{\left(\mathbf{S}_{(t)}\right)_{kl}}{2\left(q_{t}\right)^{2}} \cdot \frac{\partial q_{t}}{\partial \sigma_{rs}^{+}} - \frac{\zeta_{0} \cdot \zeta\left(r_{t}^{m} + r_{\acute{e}la}^{d}\right)}{2} \cdot \left(\mathbf{I}_{(t)}\right)_{kl} \cdot \left(\frac{1}{p_{t}} \cdot \frac{\partial q_{t}}{\partial \sigma_{rs}^{+}} - \frac{q_{t}}{p_{t}^{2}} \cdot \frac{\partial p_{t}}{\partial \sigma_{rs}^{+}}\right)$$

pour chaque mécanisme déviatoire monotone $t=1,\ldots,3$, cf. [éq 1.1.2-3] et :

$$\begin{split} &\frac{\partial \left(\mathbf{Y}_{(t)}^{c}\right)_{kl}}{\partial \,\sigma_{rs}^{+}} = &\frac{1}{2\,q_{t}^{c}} \cdot \frac{\partial \left(\mathbf{S}_{(t)}^{c}\right)_{kl}}{\partial \,\sigma_{rs}^{+}} - \frac{\left(\mathbf{S}_{(t)}^{c}\right)_{kl}}{4\left(q_{t}^{c}\right)^{3}} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{ij} \cdot \frac{\partial \left(\mathbf{S}_{(t)}^{c}\right)_{ij}}{\partial \,\sigma_{rs}} \\ &- \frac{\zeta_{0} \cdot \zeta\left(r_{t}^{c} + r_{\,\dot{e}la}^{dc}\right) \cdot \left(\mathbf{I}_{(t)}\right)_{kl}}{4\,p_{\,t} \cdot q_{\,t}^{\,c}} \left(\frac{\partial \left(\mathbf{S}_{(t)}^{c}\right)_{ij}}{\partial \,\sigma_{rs}^{+}} \cdot \left(\mathbf{S}_{(t)}\right)_{ij} + \frac{\partial \left(\mathbf{S}_{(t)}\right)_{ij}}{\partial \,\sigma_{rs}^{+}} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{ij} - \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{p_{\,t} \cdot q_{\,t}^{\,c}} \left(q_{\,t}^{\,c} \frac{\partial \,p_{\,t}}{\partial \,\sigma_{\,rs}^{+}} + p_{\,t} \frac{\partial \,q_{\,t}^{\,c}}{\partial \,\sigma_{\,rs}^{+}}\right) \right] \end{split}$$

pour chaque mécanisme déviatoire cyclique t=1,...,3, cf. [éq 1.1.2-14].

D'où pour les mécanismes déviatoires monotones :

$$\frac{\partial \left(\mathbf{Y}_{(t)}^{m}\right)_{kl}}{\partial \sigma_{rs}^{+}} = \frac{1}{2q_{t}} \cdot \left(\mathbf{Dev}_{(t)}\right)_{klrs} - \frac{\left(\mathbf{S}_{(t)}\right)_{kl}}{4\left(q_{t}\right)^{3}} \cdot \left(\mathbf{S}_{(t)}\right)_{rs} - \frac{\zeta_{0} \cdot \zeta\left(r_{t}^{m} + r_{ela}^{d}\right)}{4p_{t}} \cdot \left(\mathbf{I}_{(t)}\right)_{kl} \cdot \left(\frac{\left(\mathbf{S}_{(t)}\right)_{rs} - q_{t}}{p_{t}} \cdot \left(\mathbf{I}_{(t)}\right)_{rs}\right) \text{ eq 6.1-3}$$

et pour les mécanismes déviatoires cycliques :

Responsable : M'JAHAD Sofia

Date: 22/11/2019 Page: 47/67 Clé: R7.01.23 Révision

c173ed655b50

$$\begin{split} &\frac{\partial \left(\mathbf{Y}_{(t)}^{c}\right)_{kl}}{\partial \sigma_{rs}^{+}} = \frac{1}{2\,q_{t}^{c}} \cdot \left(\left(\mathbf{Dev}_{(t)}\right)_{klrs} - \frac{F\left(p_{t}, \varepsilon_{p}^{v}\right) - b_{h}M}{2} \left(\mathbf{X}_{(t)}^{H} + \frac{\mathbf{S}_{(t)H}^{c}}{\|\mathbf{S}_{(t)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right)_{kl} \cdot \left(\mathbf{I}_{(t)}\right)_{rs}\right) \\ &- \frac{\left(\mathbf{S}_{(t)}^{c}\right)_{kl}}{4\left(q_{t}^{c}\right)^{3}} \cdot \left(\left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \frac{F\left(p_{t}, \varepsilon_{p}^{p}\right) - b_{h}M}{2} \left(\mathbf{X}_{(t)}^{H} + \frac{\mathbf{S}_{(t)H}^{c}}{\|\mathbf{S}_{(t)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right)_{ij} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{ij} \cdot \left(\mathbf{I}_{(t)}\right)_{rs}\right) \\ &+ \frac{\zeta_{0} \cdot \zeta\left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right) \cdot \left(\mathbf{I}_{(t)}\right)_{kl}}{4\,p_{t} \cdot q_{t}^{c}} \left(\frac{F\left(p_{t}, \varepsilon_{p}^{p}\right) - b_{h}M}{2} \left(\mathbf{X}_{(t)}^{H} + \frac{\mathbf{S}_{(t)H}^{c}}{\|\mathbf{S}_{(t)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right)_{ij} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{ij} \cdot \left(\mathbf{I}_{(t)}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,q_{t}^{c2}} \left(\left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \frac{F\left(p_{t}, \varepsilon_{p}^{p}\right) - b_{h}M}{2} \left(\mathbf{X}_{(t)}^{H} + \frac{\mathbf{S}_{(t)H}^{c}}{\|\mathbf{S}_{(t)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right)_{ij} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{ij} \cdot \left(\mathbf{I}_{(t)}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,q_{t}^{c2}} \left(\left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \frac{F\left(p_{t}, \varepsilon_{p}^{p}\right) - b_{h}M}{2} \left(\mathbf{X}_{(t)}^{H} + \frac{\mathbf{S}_{(t)H}^{c}}{\|\mathbf{S}_{(t)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right)_{ij} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{ij} \cdot \left(\mathbf{I}_{(t)}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,q_{t}^{c2}} \left(\left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,p_{t}^{c}} \cdot \left(\mathbf{I}_{(t)}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,p_{t}^{c}} \cdot \left(\mathbf{I}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,p_{t}^{c}} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,p_{t}^{c}} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} \right) \\ &+ \frac{\mathbf{S}_{(t)} \cdot \mathbf{S}_{(t)}^{c}}{2\,p_{t}^{c}} \cdot \left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} - \left(\mathbf{S}_{(t)}^{c}\right)_{rs} \right) \\$$

les divers termes étant donnés par [ég 7-7], [ég 7-8], [ég 7-9], [ég 7-10] et [ég 7-11].

Calcul des composantes $\frac{\partial LE_{ij}}{\partial \varepsilon^p}$ (tenseur d'ordre 2) :

$$\frac{\partial LE_{ij}}{\partial \varepsilon_{v}^{p}} = 3 K_{0} \cdot \left| \frac{p(\mathbf{\sigma})}{P_{r\acute{e}f}} \right|^{n} \cdot \mathbf{I}_{ij}$$
 éq 6.1-5

Calcul des composantes $\frac{\partial LE_{ij}}{\partial r_{i}^{K}}$ (tenseurs d'ordre 2) :

On constate que, pour ; K=m,c ; $k=1,\ldots,3$, cf. [éq 6.1-1] :

$$\frac{\partial LE_{ij}}{\partial r_{k}^{K}} = C_{ijrs}. \sum_{K=m,c} \left(\sum_{t=1}^{3} \Delta \lambda_{t}^{K} \frac{\partial \left(\Psi_{(t)}^{K} \right)_{rs}}{\partial r_{t}^{K}} \right) = \Delta \lambda_{k}^{K}. C_{ijrs} \frac{\partial \left(\Psi_{(k)}^{K} \right)_{rs}}{\partial r_{k}^{K}}$$

D'où, la fonction $\zeta(r)$ étant définie en [éq 1.1.2-4] et $S_{(k)}^K$ en [éq 1.1.1-5] et [éq 1.1.2-12] :

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 48/67

Révision

c173ed655b50

Mécanismes déviatoires monotones

$$\frac{\partial LE_{ij}}{\partial r_k^m} = \begin{cases} 0 & si \ r_k^m + r_{\acute{e}la}^d \le r_{hys} \\ \frac{-\zeta_0}{2} \Delta \lambda_k^m \cdot \left(\sin \psi + \frac{q_k}{p_k} \right) \cdot \frac{d \zeta}{dr} \Big|_{\left(r_k^m + r_{\acute{e}la}^d\right)} C_{ijrs} \cdot \left(\mathbf{I}_{(k)} \right)_{rs} & si \ r_{hys} < r_k^m + r_{\acute{e}la}^d < r_{mob} \\ 0 & si \ r_k^m + r_{\acute{e}la}^d > r_{mob} \end{cases}$$
 éq 6.1 -6

Mécanismes déviatoires cycliques

$$\begin{split} &\frac{\partial LE_{ij}}{\partial r_{k}^{c}} = \frac{\Delta \lambda_{k}^{c}}{2} C_{ijrs} \cdot \left(\frac{p_{k} \cdot F_{k}}{q_{k}^{c} ||\mathbf{S}_{(k)H}^{c}||_{VM}^{2D}} \left(\frac{\left(\mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)H}^{c}\right) \left(\mathbf{S}_{(k)H}^{c}\right)_{rs}}{2 \left(q_{k}^{c}\right)^{2}} - \left(\mathbf{S}_{(k)H}^{c}\right)_{rs} \right) - \zeta_{0} \left(\sin \psi + \frac{\mathbf{S}_{(k)} \cdot \mathbf{S}_{(k)}^{c}}{2 \left(p_{k}^{c}\right)^{2}} \right) \cdot \frac{d\zeta}{dr} \Big|_{\left(r_{k}^{c} + r_{ela}^{dc}\right)} \left(\mathbf{I}_{(k)} \right)_{rs} \\ &- \frac{\zeta_{0} \cdot \zeta \left(r_{k}^{c} + r_{ela}^{dc}\right) \cdot F_{k}}{2 \left(q_{k}^{c}\right)^{2}} \left(\frac{\mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)H}^{c}}{2 \left(q_{k}^{c}\right)^{2}} \mathbf{S}_{(k)} \cdot \mathbf{S}_{(k)}^{c} - \mathbf{S}_{(k)} \cdot \mathbf{S}_{(k)H}^{c} \right) \cdot \left(\mathbf{I}_{(k)} \right)_{rs} \right) \end{split}$$

éq 6.1 -7

la fonction $F_k = F(p_k, \varepsilon_v^p)$ étant définie en [éq 1.1.2-2].

De plus, pour les mécanismes de consolidation : $\frac{\partial LE_{ij}}{\partial r_4^K} = 0$, pour K = m, c .

Calcul des composantes $\frac{\partial LE_{ij}}{\partial \Delta \lambda_k^K}$ (tenseurs d'ordre 2) :

Pour K = m, c; k = 1, ..., 3

$$\frac{\partial LE_{ij}}{\partial \Delta \lambda_{k}^{K}} = C_{ijrs}^{+} \cdot \left(\Psi_{(k)}^{K} \right)_{rs} \quad ; \quad \frac{\partial LE_{ij}}{\partial \Delta \lambda_{k}^{m}} = C_{ijrs}^{+} \cdot \frac{p}{3|p|} I_{rs} \quad ; \quad \frac{\partial LE_{ij}}{\partial \Delta \lambda_{k}^{c}} = C_{ijrs}^{+} \cdot \frac{p \cdot p^{c}}{3|p||p^{c}|} I_{rs} \quad \text{éq 6.1-8}$$

6.2 Dérivées de l'équation d'évolution de la déformation plastique

Elles proviennent de l'évolution de la déformation plastique volumique, cf. [éq 2.2.4-6.2-1] :

$$\begin{split} & \epsilon_{v}^{p+} - \epsilon_{v}^{p-} + \sum_{k=1}^{3} \Delta \lambda_{k}^{m} \cdot \zeta_{0} \cdot \zeta \left(r_{k}^{m} + r_{ela}^{d} \right) \cdot \left(\sin \psi + \frac{q_{k}^{+}}{p_{k}^{+}} \right) \\ & + \sum_{k=1}^{3} \Delta \lambda_{k}^{c} \cdot \zeta_{0} \cdot \zeta \left(r_{k}^{c} + r_{ela}^{dc} \right) \cdot \left(\sin \psi + \frac{\mathbf{S}_{(k)}^{+} \cdot \mathbf{S}_{(k)}^{c+}}{2 p_{k}^{+} q_{k}^{c+}} \right) - \frac{p}{|p|} \cdot \left(\Delta \lambda_{4}^{m} + \frac{\Delta \lambda_{4}^{c} p^{c}}{|p^{c}|} \right) = 0 \quad (LEVP) \end{split}$$

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 49/67

Révision

c173ed655b50

Calcul des composantes $\frac{\partial LEVP}{\partial \sigma}$ (tenseur d'ordre 2) :

$$\begin{split} &\frac{\partial \, LEVP}{\partial \, \sigma_{\,ij}} = \sum_{k=1}^{3} \frac{\Delta \, \lambda_{k}^{m}}{2 \, p_{k}} \cdot \zeta_{0} \cdot \zeta \left(r_{k}^{m} + r_{\,\'ela}^{d} \right) \cdot \left(\frac{\left(\mathbf{S}_{(k)} \right)_{ij}}{q_{k}} - \frac{q_{k} \cdot \left(\mathbf{I}_{(k)} \right)_{ij}}{p_{k}} \right) \\ &+ \sum_{k=1}^{3} \frac{\Delta \, \lambda_{k}^{c}}{2 \, p_{k} \, q_{k}^{c}} \cdot \zeta_{0} \cdot \zeta \left(r_{k}^{c} + r_{\,\'ela}^{dc} \right) \cdot \left(\left(\mathbf{S}_{(k)} \right)_{ij} + \left(\mathbf{S}_{(k)}^{c} \right)_{ij} \left(1 - \frac{\mathbf{S}_{(k)} \cdot \mathbf{S}_{(k)}^{c}}{\left(q_{k}^{c} \right)^{2}} \right) \end{split} \tag{eq 6.2 -1}$$

en utilisant les résultats [éq 7-7], les interventions des mécanismes de consolidation étant nulles.

Calcul de la composante $\frac{\partial LEVP}{\partial s^p}$ (scalaire):

$$\begin{split} \frac{\partial \, LEVP}{\partial \, \boldsymbol{\varepsilon}_{v}^{\, p}} &= 1 - \sum_{k=1}^{3} \frac{\Delta \, \boldsymbol{\lambda}_{k}^{c}}{2 \, q_{k}^{c}} . \, b_{h} \beta \, M \, \boldsymbol{\zeta}_{0} . \, \boldsymbol{\zeta} \left(\boldsymbol{r}_{k}^{\, c} + \boldsymbol{r}_{\acute{e}la}^{\, dc} \right) \, . \\ \left[\, \mathbf{S}_{(k)} . \left(\mathbf{X}_{(k)}^{\, H} + \frac{\mathbf{S}_{(k) \, H}^{\, c}}{\| \mathbf{S}_{(k) \, H}^{\, c}\|_{V\!M}^{2\mathrm{D}}} . \, \left(\boldsymbol{r}_{k}^{\, c} + \boldsymbol{r}_{\acute{e}la}^{\, dc} \right) \right) - \frac{\mathbf{S}_{(k)}^{\, c} . \, \mathbf{S}_{(k)}}{2 \, q_{k}^{\, c}} \mathbf{S}_{(k)}^{\, c} . \left(\mathbf{X}_{(k)}^{\, H} + \frac{\mathbf{S}_{(k) \, H}^{\, c}}{\| \mathbf{S}_{(k) \, H}^{\, c}\|_{V\!M}^{2\mathrm{D}}} \, . \, \left(\boldsymbol{r}_{k}^{\, c} + \boldsymbol{r}_{\acute{e}la}^{\, dc} \right) \right) \right] \end{split} \label{eq:decomposition}$$

(cf. [éq 1.1.2-3] et [éq 1.1.2-14]).

Calcul des composantes $\frac{\partial LEVP}{\partial r_i^K}$ (scalaires) :

Pour K=m, c; k=1,...,3, en utilisant la fonction $\zeta(r)$, cf. [éq 1.1.2-4]:

Mécanismes déviatoires monotones

$$\frac{\partial \textit{LEVP}}{\partial r_k^m} = \begin{cases} 0 & \textit{si } r_k^m + r_{\textit{\'e}la}^d \leq r_{\textit{hys}} \\ \frac{\Delta \lambda_k^m . x_m . \zeta_0}{r_{\textit{mob}} - r_{\textit{hys}}} . \left(\frac{r_k^m + r_{\textit{\'e}la}^d - r_{\textit{hys}}}{r_{\textit{mob}} - r_{\textit{hys}}} \right)^{x_m - 1} . \left(\sin \psi + \frac{q_k}{p_k} \right) & \textit{si } r_{\textit{hys}} < r_k^m + r_{\textit{\'e}la}^d \leq r_{\textit{mob}} & \text{\'eq 6.2 -3} \\ 0 & \textit{si } r_k^m + r_{\textit{\'e}la}^d > r_{\textit{mob}} \end{cases}$$

Mécanismes déviatoires cycliques

$$\frac{\partial LEVP}{\partial r_{k}^{c}} = \Delta \lambda_{k}^{c} \zeta_{0} \left| \frac{\partial \zeta}{\partial r_{k}^{c}} \right|_{r_{k}^{c} + r_{\acute{e}la}^{dc}} \left| \sin \psi + \frac{\mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)}}{2 p_{k} q_{k}^{c}} \right| - \frac{F_{k} \cdot \zeta \left(r_{k}^{c} + r_{\acute{e}la}^{dc} \right)}{2 q_{k}^{c}} \left| \frac{\mathbf{S}_{(k)H}^{c} \cdot \mathbf{S}_{(k)}}{\|\mathbf{S}_{(k)H}^{c}\|_{VM}^{2D}} - \frac{\mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)}}{2 \left(q_{k}^{c} \right)^{2}} \cdot \mathbf{S}_{(k)H}^{c} \cdot \mathbf{S}_{(k)}^{c} \right| \right|$$

$$\mathbf{6.2 - 4}$$

où
$$F_k = F\left(p_k, \epsilon_v^p\right)$$
 est définie en [éq 1.1.2-2]. De plus, $\frac{\partial LEVP}{\partial r_4^m} = \frac{\partial LEVP}{\partial r_4^c} = 0$.

Calcul des composantes $\frac{\partial LEVP}{\partial \Delta \lambda^K}$ (scalaires) :

Pour ; K = m, c; k = 1, ..., 3 :

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 50/67 Clé: R7.01.23

Révision

c173ed655b50

Mécanismes déviatoires monotones :
$$\frac{\partial LEVP}{\partial \Delta \lambda_{k}^{m}} = \zeta_{0}.\zeta\left(r_{k}^{m} + r_{\acute{e}la}^{d}\right).\left(\sin\psi + \frac{q_{k}}{p_{k}}\right)$$

éq 6.2-

Mécanismes déviatoires cycliques :

$$\frac{\partial LEVP}{\partial \Delta \lambda_{k}^{c}} = \zeta_{0}.\zeta \left(r_{k}^{c} + r_{\acute{e}la}^{dc} \right). \left(\sin \psi + \frac{\mathbf{S}_{(k)}.\mathbf{S}_{(k)}^{c}}{2 p_{k} q_{k}^{c}} \right)$$

éq 6.2-

5

6

7

Mécanismes de consolidation :

$$\frac{\partial LEVP}{\partial \Delta \chi_A^m} = -\frac{p}{|p|}$$

$$\frac{\partial LEVP}{\partial \Delta \lambda_4^m} = -\frac{p}{|p|} \qquad ; \qquad \frac{\partial LEVP}{\partial \Delta \lambda_4^c} = -\frac{p}{|p|} \cdot \frac{p^c}{|p^c|}$$

éq 6.2-

6.3 Dérivées de l'équation d'évolution de l'écrouissage déviatoire

Elles proviennent de l'évolution de l'écrouissage des mécanismes déviatoires cf. [éq 1.1.2-5] et [éq 1.1.2-15] :

$$r_{k}^{K+} - r_{k}^{K-} - \Delta \lambda_{k}^{K} \frac{\left(1 - r_{k}^{K+} - r_{\acute{e}la}^{dK}\right)^{2} \cdot \gamma_{k}^{K}}{a_{c} + \zeta \left(r_{k}^{K+} - r_{\acute{e}la}^{dK}\right) \cdot \left(a_{m} - a_{c}\right)} = 0 \qquad K = m, c \quad k = 1, 2, 3 \quad (LR.1)$$

Calcul des composantes $\frac{\partial LR.1}{\partial \sigma_{ii}}$ (tenseur d'ordre 2) :

Pour les mécanismes déviatoires monotones, k=1,...,3 : $\gamma_k^m=1$, donc :

$$\frac{\partial LR.1}{\partial \sigma_{ii}} = 0$$
 éq 6.3-1

Pour les mécanismes déviatoires cycliques, $k=1,\ldots,3$:

$$\begin{split} \frac{\partial LR.1}{\partial \sigma_{ij}} = & -\Delta \lambda_k^c \frac{\left(1 - r_k^{c+} - r_{\acute{e}la}^{dc}\right)^2}{a_c + \zeta \left(r_k^{c+} + r_{\acute{e}la}^{dc}\right) \cdot \left(a_m - a_c\right)} \cdot \frac{\|\mathbf{S}_{(t)H}^c\|_{VM}^{2\mathrm{D}}}{\left(2 \, q_k^c \cdot \|\mathbf{S}_{(k)H}^c\|_{VM}^{2\mathrm{D}} - \mathbf{S}_{(k)}^c \cdot \mathbf{S}_{(k)H}^c\right)^2} \\ & -\frac{\partial \left(\mathbf{S}_{(k)}^c\right)_{rs}}{\partial \sigma_{ij}} \cdot \left(2 \, q_k^c \cdot \left(\mathbf{S}_{(k)H}^c\right)_{rs} - \frac{\mathbf{S}_{(k)}^c \cdot \mathbf{S}_{(k)H}^c}{q_k^c} \left(\mathbf{S}_{(k)H}^c\right)_{rs}\right) \end{split} \tag{eq 6.3-2}$$

avec l'opérateur $\frac{\partial (\mathbf{S}_{(k)}^c)_{rs}}{\partial \sigma_{ii}}$ défini par [éq 6-8].

Calcul des composantes $\frac{\partial LR.1}{\partial \varepsilon^p}$ (scalaires) :

Pour les mécanismes déviatoires monotones, $k=1,\ldots,3$: $\gamma_k^m=1$, donc :

$$\frac{\partial LR.1}{\partial \varepsilon_{\nu}^{p}} = 0$$
 éq 6.3-3

Pour les mécanismes déviatoires cycliques, $k=1,\ldots,3$:

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 51/67 Clé : R7.01.23 Révision

c173ed655b50

$$\begin{split} &\frac{\partial LR \cdot 1}{\partial \, \boldsymbol{\varepsilon}_{\boldsymbol{v}}^{p}} = -\frac{\Delta \, \boldsymbol{\lambda}_{k}^{c} \cdot \left(1 - r_{k}^{c} - r_{ela}^{dc}\right)}{a_{c} + \zeta \left(r_{k}^{c} + r_{ela}^{dc}\right) \cdot \left(a_{m} - a_{c}\right)} \cdot \frac{\|\boldsymbol{S}_{(t)H}^{c}\|_{VM}^{2\mathrm{D}}}{\left(2\mathbf{q}_{k}^{c} \cdot \|\boldsymbol{S}_{(k)H}^{c}\|_{VM}^{2\mathrm{D}} - \mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)H}^{c}\right)^{2}} \\ &\frac{\partial \left(\boldsymbol{S}_{(k)}^{c}\right)_{|\boldsymbol{i}\boldsymbol{j}}}{\partial \, \boldsymbol{\varepsilon}_{\boldsymbol{v}}^{p}} \cdot \left(2\mathbf{q}_{k}^{c} \cdot \left(\boldsymbol{S}_{(k)H}^{c}\right)_{|\boldsymbol{i}\boldsymbol{j}} - \frac{\mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)H}^{c}}{q_{k}^{c}} \left(\boldsymbol{S}_{(k)}^{c}\right)_{|\boldsymbol{i}\boldsymbol{j}}\right) \end{split} \tag{eq 6.3-4}$$

$$\text{avec} \quad \frac{\partial \left(\mathbf{S}_{[k]}^{c}\right)_{ij}}{\partial \, \boldsymbol{\varepsilon}_{\boldsymbol{v}}^{p}} = \beta \, M \, b_{h} \cdot p_{k} \cdot \left(\mathbf{X}_{[k]}^{H} + \frac{\mathbf{S}_{[k]H}^{c}}{\|\mathbf{S}_{[k]H}^{c}\|_{VM}^{2\mathrm{D}}} \cdot \left(\boldsymbol{r}_{k}^{c} + \boldsymbol{r}_{\acute{e}la}^{dc}\right)\right)_{ij}, \, \text{cf. [\'eq 1.1.2-12] et [\'eq 1.1.2-2]}.$$

Calcul des composantes $\frac{\partial LR.1}{\partial r_k^K}$ (scalaires) :

Pour les mécanismes déviatoires monotones, $k=1,...,3:\gamma_k^m=1$, donc :

$$\frac{\partial LR.1}{\partial r_k^m} = 1 + \frac{\Delta \lambda_k^m.\left(1 - r_k^m - r_{\acute{e}la}^d\right)}{a_c + \zeta \left(r_k^m + r_{\acute{e}la}^d\right).\left(a_m - a_c\right)} \cdot \left(2 + \frac{\left(1 - r_k^m - r_{\acute{e}la}^d\right).\left(a_m - a_c\right)}{a_c + \zeta \left(r_k^m + r_{\acute{e}la}^d\right).\left(a_m - a_c\right)} \cdot \frac{\partial \zeta}{\partial r_k^m} \Big|_{r_k^m + r_{\acute{e}la}^d}\right)$$

soit

$$\frac{\partial LR.1}{\partial r_k^m} = \begin{cases} 1 + \Delta \lambda_k^m \cdot \frac{2\left(1 - r_k^m - r_{ela}^d\right)}{a_c} & \text{si } r_k^m + r_{ela}^d < r_{hys} \\ 1 + \frac{\Delta \lambda_k^m \left(1 - r_k^m - r_{ela}^d\right)}{a_c + \zeta \left(r_k^K + r_{ela}^{dK}\right) \cdot \left(a_m - a_c\right)} \cdot \left(2 + \frac{\left(1 - r_k^m - r_{ela}^d\right) \cdot \left(a_m - a_c\right)}{a_c + \zeta \left(r_k^m + r_{ela}^d\right) \cdot \left(a_m - a_c\right)} \cdot \frac{\partial \zeta}{\partial r_k^m} \Big|_{r_k^m + r_{ela}^d} \right) & \text{si } r_{hys} < r_k^m + r_{ela}^d < r_{mob} \\ 1 + \Delta \lambda_k^m \cdot \frac{2\left(1 - r_k^m - r_{ela}^d\right)}{a_m} & \text{si } r_k^m + r_{ela}^d > r_{mob} \end{cases}$$

éq 6.3 -5

Pour les mécanismes déviatoires cycliques, $k=1,\ldots,3$:

$$\begin{aligned} &\text{avec} \quad \frac{\partial \left(\mathbf{S}_{(k)}^{c}\right)_{ij}}{\partial \, r_{k}^{c}} \!\!=\!\! -p_{k}(\mathbf{\sigma}) \, . \, F\!\left(\,p_{k}(\mathbf{\sigma})\,, \boldsymbol{\varepsilon}_{v}^{p}\right) \, . \, \frac{\left(\,\mathbf{S}_{(k)H}^{c}\right)_{ij}}{\|\mathbf{S}_{(k)H}^{c}\|_{V\!M}^{2\mathrm{D}}} \, , \, \text{cf. [\'eq 1.1.2-12]}. \\ &\text{De plus}: \quad \frac{\partial \, LR \, . \, 1}{\partial \, r_{4}^{K}} \!\!=\! 0 \, \, . \end{aligned}$$

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 52/67 Clé: R7.01.23

Révision

c173ed655b50

Calcul des composantes $\frac{\partial LR.1}{\partial \Delta \lambda_i^K}$ (scalaires) :

Pour K = m, c; k = 1, ..., 3:

$$\frac{\partial LR.1}{\partial \Delta \lambda_k^K} = -\frac{\left(1 - r_k^K - r_{\acute{e}la}^{dK}\right)^2}{a_c + \zeta \left(r_k^K + r_{\acute{e}la}^{dK}\right).\left(a_m - a_c\right)} \cdot \gamma_k^K \tag{eq 6.3-7}$$

avec:

$$\gamma_k^m = 1 \text{ et } \gamma_k^c = \frac{2 q_k^c . \|\mathbf{S}_{(k)H}^c\|_{VM}^{2D}}{2 q_k^c . \|\mathbf{S}_{(k)H}^c\|_{VM}^{2D} - \mathbf{S}_{(k)H}^c . \mathbf{S}_{(k)}^c}.$$

$$\frac{\partial LR.1}{\partial \Delta \lambda_{A}^{K}} = 0$$
.

6.4 Dérivées de l'équation d'évolution de l'écrouissage sphérique

Elles proviennent de l'évolution de l'écrouissage des mécanismes de consolidation sphériques, cf. [éq 1.1.3-3] et [éq 1.1.3-11] :

$$r_4^{K+} - r_4^{K-} - \Delta \lambda_4^K \frac{\left(1 - r_4^{K+} - r_{\acute{e}la}^{sK}\right)^2}{c_K} \left(\frac{P_{r\acute{e}f}}{P_c \left(\epsilon_v^{P+}\right)}\right) = 0 \qquad K = m, c \ (LR.2)$$

Calcul des composantes $\frac{\partial LR.2}{\partial \sigma_{ii}}$ (tenseur d'ordre 2) :

$$\frac{\partial LR.2}{\partial \sigma_{ii}} = 0$$
 éq 6.4-1

Calcul des composantes $\frac{\partial LR.2}{\partial s^p}$ (scalaires) :

Pour K=m,c:

$$\frac{\partial LR.2}{\partial \, \varepsilon_{v}^{P}} = \frac{\partial \, LR.2}{\partial \, P_{c}} \, \cdot \, \frac{\partial \, P_{c}}{\partial \, \varepsilon_{v}^{P}} = -\frac{\Delta \, \lambda_{4}^{K} \, \cdot \, P_{r\acute{e}\!f} \, \cdot \, \beta \, \cdot \left(1 - r_{4}^{K} - r_{\acute{e}\!Ia}^{sK}\right)^{2}}{c_{K} \, \cdot \, P_{c}\left(\varepsilon_{v}^{P}\right)} \tag{eq 6.4-2}$$

Calcul des composantes $\frac{\partial LR.2}{\partial r^K}$ (scalaires) :

Pour K=m,c:

$$\frac{\partial LR.2}{\partial r_4^K} = 1 + 2\Delta \lambda_4^K \cdot \frac{\left(1 - r_4^K - r_{\acute{e}la}^{sK}\right)}{c_K} \cdot \left(\frac{P_{r\acute{e}f}}{P_c\left(\epsilon_v^P\right)}\right) \tag{eq 6.4-3}$$

Calcul des composantes $\frac{\partial LR.2}{\partial \Delta \lambda_{A}^{K}}$ (scalaires) :

Pour K=m,c:

Responsable : M'JAHAD Sofia

Date: 22/11/2019 Page: 53/67 Clé: R7.01.23

Révision

c173ed655b50

$$\frac{\partial LR.2}{\partial \Delta \lambda_4^K} = -\frac{\left(1 - r_4^K - r_{\acute{e}la}^{sK}\right)^2}{c_K} \cdot \left(\frac{P_{r\acute{e}f}}{P_c(\epsilon_v^P)}\right) \tag{eq 6.4-4}$$

De plus : $\frac{\partial LR.2}{\partial r_{\cdot}^{K}} = 0$, pour les mécanismes déviatoires k = 1, ..., 3 .

6.5 Dérivées des critères des mécanismes déviatoriques

Elles proviennent des critères [éq 1.1.2-1] et [éq 1.1.2-8] :

$$q_{k}^{K+} + Mp_{k}^{+} \left(1 - b_{h} \cdot \ln \left(\frac{p_{k}^{+}}{P_{c0} \cdot e^{-\beta \varepsilon_{v}^{p_{+}}}} \right) \right) \cdot \left(r_{k}^{K+} + r_{\acute{e}la}^{dK} \right) = 0 \qquad K = m, c \quad (LF.1)$$

Calcul des composantes $\frac{\partial LF \cdot 1}{\partial \sigma_{ii}}$ (tenseur d'ordre 2) :

Pour les mécanismes monotones, cf. [ég 7-13] :

$$\frac{\partial LF \cdot 1}{\partial \sigma_{ij}} = \frac{1}{2 q_k} \left(\mathbf{S}_{(k)} \right)_{ij} + \frac{M}{2} \cdot \left(r_k^m + r_{ela}^d \right) \cdot \left(1 - b_h \cdot \left(1 + \ln \left(\frac{p_k}{P_{c0} \cdot e^{-\beta \ \varepsilon_v^p}} \right) \right) \right) \cdot \left(\mathbf{I}_{(k)} \right)_{ij} \qquad \text{eq 6.5-5}$$

Pour les mécanismes déviatoires, cf. [éq 7-16] :

$$\frac{\partial LF.1}{\partial \sigma_{ij}} = \frac{1}{2q_{k}^{c}} \left(\mathbf{S}_{(k)}\right)_{ij} + \frac{M}{2}.\left(1 - b_{k}\left(1 + \ln\left|\frac{p_{k}(\boldsymbol{\sigma})}{P_{c}\left(\boldsymbol{\varepsilon}_{v}^{p}\right)}\right|\right)\right) \cdot \left(\left(r_{k}^{c} + r_{\acute{e}la}^{dc}\right) - \left(\mathbf{X}_{(t)}^{H} + \frac{\mathbf{S}_{(t)H}^{c}}{\|\mathbf{S}_{(t)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{t}^{c} + r_{\acute{e}la}^{dc}\right)\right) \cdot \frac{S_{(k)}^{c}}{2q_{k}^{c}}\right) \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} + \frac{S_{(t)H}^{c}}{2q_{k}^{c}} \cdot \left(\mathbf{I}_{(k)}\right)_{ij} \cdot \left$$

Calcul des composantes $\frac{\partial LF \cdot 1}{\partial \varepsilon^p}$ (scalaires) :

Pour k=1,...,3 , cf. [éq 1.1.2-1] et [éq 1.1.2-10] et [éq 7-14] :

Mécanismes déviatoires monotones : $\frac{\partial LF.1}{\partial c_{k}^{p}} = -\beta Mb_{h} \cdot p_{k} \cdot \left(r_{k}^{m} + r_{ela}^{d}\right)$ éq 6.5-7

Mécanismes déviatoires cycliques :

$$\frac{\partial LF \cdot 1}{\partial \varepsilon_{v}^{p}} = -\beta Mb_{h} \cdot p_{k} \cdot \left(\left(r_{k}^{m} + r_{\acute{e}la}^{dc} \right) - \frac{\mathbf{S}_{(k)}^{c}}{2 \, q_{k}^{c}} \cdot \left(\mathbf{X}_{(k)}^{H} + \frac{\mathbf{S}_{(k)}^{c}}{\|\mathbf{S}_{(k)H}^{c}\|_{VM}^{2D}} \cdot \left(r_{k}^{c} + r_{\acute{e}la}^{dc} \right) \right) \qquad \text{eq 6.5 -8}$$

avec $\mathbf{X}_{(k)}^H$ défini en [éq 1.1.2-13].

Calcul des composantes $\frac{\partial LF.1}{\partial r_{\cdot}^{K}}$ (scalaires) :

Pour k=1 3:

Responsable: M'JAHAD Sofia

Date : 22/11/2019 Page : 54/67 Clé : R7.01.23 Révision

Révision c173ed655b50

 $\frac{\partial LF.1}{\partial r_k^m} = Mp_k(\sigma) \cdot \left(1 - b_h \cdot \ln \left(\frac{p_k(\sigma)}{P_{\alpha} e^{-\beta \epsilon_v^{p+}}} \right) \right)$

éq 6.5-9

Mécanismes déviatoires cycliques :

Mécanismes déviatoires monotones :

$$\frac{\partial LF.1}{\partial r_{k}^{c}} = Mp_{k}(\sigma). \left(1 - b_{h}.\ln\left(\frac{p_{k}(\sigma)}{P_{c0}.e^{-\beta \, \varepsilon_{v}^{p^{+}}}}\right)\right). \left(1 - \frac{S_{(k)}^{c}.S_{(k)H}^{c}}{2q_{k}^{c}.\|S_{(k)H}^{c}\|_{VM}^{2D}}\right) \qquad \text{ eq 6.5 -10}$$

Calcul des composantes $\frac{\partial LF.1}{\partial \Delta \lambda_k^K}$ (scalaires) :

$$\frac{\partial LF.1}{\partial \Delta \lambda_k^K} = 0$$
 éq 6.5-11

6.6 Dérivées des critères des mécanismes de consolidation sphériques

Elles proviennent des critères [éq 1.1.3-1] et [éq 1.1.3-8] :

$$|p^{K+}| + d \cdot P_{c0} \cdot e^{-\beta \, \varepsilon_{\nu}^{P^{+}}} \cdot (r_{4}^{K+} + r_{\acute{e}la}^{sK}) = 0$$
 $K = m, c \ (LF.2)$

avec dans le cas cyclique : $p^{c}(\mathbf{\sigma}, \, \mathbf{\epsilon}_{v}^{p}, \, p_{H}, \mathbf{\epsilon}_{vH}^{p}) = |p(\mathbf{\sigma})| + p_{H}.e^{-\beta\left(\mathbf{\epsilon}_{v}^{p} - \mathbf{\epsilon}_{vH}^{p}\right)}$, cf. [éq 1.1.3-9].

Calcul des composantes $\frac{\partial \, LF \, . \, 2}{\partial \, \sigma_{ii}}$ (tenseur d'ordre 2) :

Mécanisme sphérique monotone : $\left(\frac{\partial LF.2}{\partial \sigma}\right)_{ii} = \frac{1}{3} \cdot \frac{p}{|p|} \cdot \mathbf{I}_{ij}$ éq 6.6-1

Mécanisme sphérique cyclique : $\left(\frac{\partial LF.2}{\partial \sigma} \right)_{ij} = \frac{p}{3 |p|} \cdot \frac{p^c}{3 |p^c|} \cdot \mathbf{I}_{ij}$ éq 6.6-2

Calcul des composantes $\frac{\partial LF.2}{\partial \varepsilon_{\nu}^{p}}$ (scalaires) :

Mécanisme sphérique monotone : $\frac{\partial LF.2}{\partial \varepsilon_{v}^{p}} = -d.\beta.P_{c0}.e^{-\beta \varepsilon_{v}^{p}}.\left(r_{4}^{m} + r_{\acute{e}la}^{s}\right) \qquad \qquad \text{éq 6.6-3}$

Mécanisme sphérique cyclique :

$$\frac{\partial LF.2}{\partial \varepsilon_{v}^{p}} = -\beta \cdot e^{-\beta \varepsilon_{v}^{p}} \left| d \cdot P_{c0} \cdot \left(r_{4}^{c} + r_{\acute{e}la}^{sc} \right) + p_{H} \cdot e^{-\beta \varepsilon_{vH}^{p}} \cdot \frac{|p| + p_{H} \cdot e^{-\beta \left(\varepsilon_{v}^{p} - \varepsilon_{vH}^{p} \right)}}{||p| + p_{H} \cdot e^{-\beta \left(\varepsilon_{v}^{p} - \varepsilon_{vH}^{p} \right)}|} \right|$$
 éq 6.6 -4

(cf. [éq 7-20] et [éq 7-23])

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 55/67 Clé: R7.01.23

Révision

c173ed655b50

Calcul des composantes $\frac{\partial LF.2}{\partial r^K}$ (scalaires) :

Mécanisme sphérique monotone :

$$\frac{\partial LF.2}{\partial r_{\perp}^{m}} = d.P_{c0}e^{-\beta\epsilon_{\nu}^{p}}$$

éq 6.6 -5

Mécanisme sphérique cyclique :

$$\frac{\partial LF.2}{\partial r_{A}^{c}} = d.P_{c0}.e^{-\beta \varepsilon_{\nu}^{p}}$$

éq 6.6-6

cf. [éq 7-21] et [éq 7-24], avec p^c défini en [éq 1.1.3-9].

Calcul des composantes $\frac{\partial LF.2}{\partial \Lambda \lambda_{\star}^{K}}$ (scalaires) :

$$\frac{\partial LF.2}{\partial \Delta \lambda_4^K} = 0$$
 éq 6.6-7

7 Annexe 2: notation des tenseurs, de leurs invariants et expressions de diverses dérivées

On se place pour plus de facilité en base orthonormée (e_1, e_2, e_3) de l'espace à 3 dimensions. On définit le tenseur identité d'ordre 2, ici en utilisant la notation de Walpole-Cowin :

$$\mathbf{I} = \delta_{ij} \cdot \mathbf{e}_i \otimes \mathbf{e}_j = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 éq 7-1

On note, pour chaque mécanisme dans le plan k:

$$p_{k}(\mathbf{\sigma}) = \frac{1}{2} \operatorname{tr} \left(\mathbf{\sigma}_{(k)} \right) \quad ; \quad q_{k}(\mathbf{\sigma}) = ||\mathbf{S}_{(k)}(\mathbf{\sigma})||_{VM}^{2D}$$
 éq 7-2

avec
$$\mathbf{S}_{(k)}(\mathbf{\sigma}) = \mathbf{\sigma}_{(k)} - p_k(\mathbf{\sigma}) \cdot \mathbf{I}_{(k)}$$
 éq 7-3

et
$$\|\mathbf{S}_{(k)}(\boldsymbol{\sigma})\|_{VM}^{2D} = \frac{\sqrt{2}}{2} \cdot \sqrt{\mathbf{S}_{(k)_{11}^2} + \mathbf{S}_{(k)_{22}^2} + 2\mathbf{S}_{(k)_{12}^2}} = \frac{1}{2} \sqrt{\left(\boldsymbol{\sigma}_{(k)_{11}} - \boldsymbol{\sigma}_{(k)_{22}}\right)^2 + 4\boldsymbol{\sigma}_{(k)_{12}^2}}$$
 éq 7-4

 $\mathbf{\sigma}_{(k)} \ \text{ \'etant d\'efini par [\'eq 1.1.1-3], pour } \ i_k = 1 + mod(k\,,3) \ \text{ et } \ j_k = 1 + mod(k\,+1,3) \ .$

On a la relation suivante entre les termes du tenseur $S_{(k)}$:

$$\mathbf{S}_{i_k i_k} = -\mathbf{S}_{j_k j_k}$$

On définit de plus les tenseurs identité d'ordre 2 (pour chaque plan) et 4 :

$$\mathbf{I}_{(k)} = \delta_{i_k j_k} \mathbf{e}_{i_k} \otimes \mathbf{e}_{j_k}$$
 ; $\mathbf{I} = \delta_{ij} \mathbf{e}_i \otimes \mathbf{e}_j$ éq 7-5

On donne ci-dessous les expressions de plusieurs dérivées qui interviennent plusieurs fois dans les expressions analytiques du modèle.

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 56/67 Clé : R7.01.23 Révision

c173ed655b50

$$\frac{\partial \mathbf{\sigma}_{ij}}{\partial \mathbf{\sigma}_{rs}} = \mathbf{I}_{ijrs} \quad ; \qquad \frac{\partial p}{\partial \mathbf{\sigma}_{rs}} = \frac{1}{3} \cdot \mathbf{I}_{rs} \quad ; \qquad \frac{\partial p_k}{\partial \mathbf{\sigma}} = \frac{1}{2} \cdot \mathbf{I}_{(k)}$$
 éq 7-6

$$\frac{\partial q_k}{\partial \mathbf{S}_{(k)}} = \frac{1}{2 q_k} \mathbf{S}_{(k)} \; ; \qquad \frac{\partial \mathbf{S}_{(k)}}{\partial \boldsymbol{\sigma}} = \mathbf{Dev}_{(k)} \qquad ; \qquad \qquad \text{éq 7-7}$$

On remarque que : $\mathbf{Dev}_{(k)} \underline{\otimes} \mathbf{S}_{(k)} = \mathbf{S}_{(k)}$. De plus :

$$\begin{split} &\frac{\partial \, q_{k}^{c}}{\partial \, (\mathbf{S}_{(k)}^{c})_{ij}} \! \! = \! \! \frac{\! \left(\mathbf{S}_{(k)}^{c} \right)_{ij}}{2 \, q_{k}^{c}} \quad ; \qquad \frac{\partial \, q_{k}^{c}}{\partial \, \boldsymbol{\sigma}_{rs}} \! \! = \! \frac{\! \left(\mathbf{S}_{(k)}^{c} \right)_{ij}}{2 \, q_{k}^{c}} \cdot \frac{\partial \left(\mathbf{S}_{(k)}^{c} \right)_{ij}}{\partial \, \boldsymbol{\sigma}_{rs}} \quad ; \\ &\frac{\partial \left(\mathbf{S}_{(k)}^{c} \right)_{ij}}{\partial \, \boldsymbol{\sigma}_{rs}} \! \! \! = \! \! \left(\mathbf{Dev}_{(k)} \! \right)_{ijrs} \! \! - \! \frac{F \left(\, p_{\,t}, \, \boldsymbol{\epsilon}_{v}^{\,p} \right) \! - \! b_{\,h} M}{2} \! \left(\mathbf{X}_{(t)}^{H} \! + \! \frac{\mathbf{S}_{(t)H}^{c}}{||\mathbf{S}_{(t)H}^{c}||_{VM}^{2\mathrm{D}}} \cdot \left(\, r_{\,t}^{\,c} \! + \! r_{\,\acute{e}la}^{\,dc} \right) \! \right)_{ij} \cdot \left(\mathbf{I}_{(t)} \right)_{rs} \quad \text{\'eq 7-8} \end{split}$$

On a aussi : $\mathbf{Dev}_{(k)} \underline{\otimes} \mathbf{S}_{(k)}^c = \mathbf{S}_{(k)}^c$. De plus, en $q_k = 0$ (ou $q_k^c = 0$), la dérivée $\frac{\partial q_k}{\partial \mathbf{S}_{(k)}}$ (ou $\frac{\partial q_k^c}{\partial \mathbf{S}_{(k)}}$) n'est pas définie. En pratique, on prendra la valeur $\mathbf{0}$.

On utilise, de manière à alléger les écritures, la notation de Walpole-Cowin des tenseurs d'ordre 2 et 4.

$$\mathbf{S}_{(k)} \! = \! \begin{pmatrix} \mathbf{S}_{i_k i_k} \\ \mathbf{S}_{j_k j_k} \\ \sqrt{2} \cdot \mathbf{S}_{i_k j_k} \end{pmatrix} \! = \! \begin{pmatrix} \mathbf{S}_{i_k i_k} \\ -\mathbf{S}_{i_k i_k} \\ \sqrt{2} \cdot \mathbf{S}_{i_k j_k} \end{pmatrix} \; ; \qquad \mathbf{I}_{(k)} \! = \! \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}^{(k)} \; ; \qquad \mathbf{Dev}_{(k)} \! = \! \frac{1}{2} \! \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{(k)} \quad \text{éq 7-9}$$

car $\mathbf{S}_{j_kj_k}$ =- $\mathbf{S}_{i_ki_k}$, ce tenseur étant déviateur dans le plan k . On obtient notamment :

$$(\mathbf{S}_{(k)})_{ij} \cdot (\mathbf{I}_{(k)})_{rs} = \begin{vmatrix} \mathbf{S}_{i_k i_k} & \mathbf{S}_{i_k i_k} & \mathbf{0} \\ -\mathbf{S}_{i_k i_k} & -\mathbf{S}_{i_k i_k} & \mathbf{0} \\ \sqrt{2} \cdot \mathbf{S}_{i_k j_k} & \sqrt{2} \cdot \mathbf{S}_{i_k j_k} & \mathbf{0} \end{vmatrix}$$
 éq 7-11

$$\left(\mathbf{I}_{(k)} \right)_{ij} \cdot \left(\mathbf{I}_{(k)} \right)_{rs} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 éq 7-12

Par ailleurs, pour le calcul des multiplicateurs plastiques et des opérateurs tangents, on a besoin de :

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 57/67 Clé: R7.01.23 Révision

c173ed655b50

$$\mathbf{f}_{\mathbf{k},\sigma}^{\mathbf{m}} = \frac{1}{2} q_{k,S_{[k]}} \underline{\underline{\otimes}} \mathbf{Dev}_{(k)} + \frac{1}{2} f_{k,p_k}^{m}. I_{(k)} = \frac{\mathbf{S}_{(k)}}{2\mathbf{q}_k} + \frac{M}{2}. \left(r_k^m + r_{\acute{e}la}^d \right). \left(1 - b_h \left(1 + \ln \left| \frac{p_k(\sigma)}{P_c(\epsilon_v^p)} \right| \right) \right). \mathbf{I}_{(k)}$$
 éq 7 -13

En $q_k = 0$, on retire le premier terme de cette expression, cf. [éq 7-7].

$$\mathbf{f}_{\mathbf{k}, \varepsilon_{\mathbf{v}}^{\mathbf{p}}}^{\mathbf{m}} = -b_{h} \beta M \cdot p_{k}(\sigma) \cdot \left(r_{k}^{m} + r_{\acute{e}la}^{d} \right)$$
 éq 7-14

$$\mathbf{f}_{k,r_{k}^{m}}^{\mathbf{m}} = p_{k}(\mathbf{\sigma}) \cdot F\left(p_{k}(\mathbf{\sigma}), \mathbf{\epsilon}_{v}^{p}\right) = p_{k}(\mathbf{\sigma}) \cdot M \cdot \left(1 - b_{h}\left(1 + \ln\left|\frac{p_{k}(\mathbf{\sigma})}{P_{c}(\mathbf{\epsilon}_{v}^{p})}\right|\right)\right) \tag{eq 7-15}$$

$$\mathbf{f}_{k,\sigma}^{c} = \frac{\mathbf{S}_{_{[k]}}^{c}}{2\mathbf{q}_{k}^{c}} + \frac{M}{2} \left| 1 - b_{h} \left| 1 + \ln \left| \frac{p_{_{k}}(\mathbf{\sigma})}{P_{_{c}}\left(\boldsymbol{\varepsilon}_{_{v}}^{p}\right)} \right| \right) \right| \cdot \left(\left| r_{_{k}}^{c} + r_{_{\acute{e}la}}^{dc} \right| - \left| \mathbf{X}_{_{(t)}}^{H} + \frac{\mathbf{S}_{_{(t)H}}^{c}}{\|\mathbf{S}_{_{(t)H}}^{c}\|_{VM}^{2D}} \cdot \left(r_{_{t}}^{c} + r_{_{\acute{e}la}}^{dc} \right) \right| \cdot \mathbf{I}_{_{(k)}} \quad \text{éq 7-16}$$

$$\begin{split} \mathbf{f}_{\mathbf{k},\mathbf{e}_{\mathbf{v}}^{p}}^{\mathbf{c}} &= \mathbf{f}_{k,q_{k}^{c}}^{\mathbf{c}} \cdot q_{k,\mathbf{e}_{\mathbf{v}}^{p}}^{c} - b_{h} \, \mathbf{\beta} \, M \, . \, p_{k}(\sigma) \, . \, \left(r_{k}^{c} + r_{\acute{e}la}^{dc} \right) \\ &= - \mathbf{\beta} \, M \, b_{h} \cdot p_{k} \cdot \left(\left(r_{k}^{c} + r_{\acute{e}la}^{dc} \right) - \frac{\mathbf{S}_{(k)}^{c}}{2\mathbf{q}_{k}^{c}} \cdot \left(X_{(k)}^{H} + \frac{\mathbf{S}_{(k)H}^{c}}{\|\mathbf{S}_{(k)H}^{c}\|_{VM}^{2\mathrm{D}}} \, . \, \left(r_{k}^{c} + r_{\acute{e}la}^{dc} \right) \right) \end{split} \tag{eq 7-17}$$

$$\begin{split} \mathbf{f}_{k,r_{k}^{c}}^{c} &= \mathbf{f}_{k,q_{k}^{c}}^{c} \cdot q_{k,r_{k}^{c}}^{c} + p_{k}\left(\mathbf{\sigma}\right) \cdot F\left(\left.p_{k}\left(\mathbf{\sigma}\right)\right, \mathbf{\epsilon}_{v}^{P}\right) \\ &= M.p_{k}\left(\mathbf{\sigma}\right) \cdot \left(1 - b_{h} \cdot \ln\left(\frac{p_{k}\left(\mathbf{\sigma}\right)}{P_{c\theta} \cdot e^{-\beta \mathbf{\epsilon}_{v}^{P}}}\right)\right) \cdot \left(1 - \frac{\mathbf{S}_{(k)}^{c} \cdot \mathbf{S}_{(k)H}^{c}}{2\mathbf{q}_{k}^{c} \cdot \|\mathbf{S}_{(k)H}^{c}\|_{VM}^{2D}}\right) \end{split} \tag{eq 7-18}$$

$$f_{4,\sigma}^{m} = \frac{p}{3|p|} . I = \frac{1}{3} \operatorname{sgn}(p) . I$$
 éq 7-19

$$f_{4, \, \varepsilon_{v}^{p}}^{m} = -d \, \beta \, . \, P_{c0} . \, e^{-\beta \, \varepsilon_{v}^{p}} . \, \left(r_{4}^{m} + r_{ela}^{s} \right)$$
 éq 7-20

$$f_{4r_{*}}^{m} = d.P_{c}(\epsilon_{v}^{p}) = d.P_{c0}.e^{-\beta\epsilon_{v}^{p}}$$
 éq 7-21

$$f_{4,\sigma}^c = \frac{p}{3|p|} \cdot \frac{p^c}{3|p^c|} \cdot I$$
 éq 7-22

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 58/67 Clé: R7.01.23 Révision

c173ed655b50

$$\begin{split} f_{4,\varepsilon_{v}^{c}}^{c} &= -\beta \,.\, e^{-\beta \,\varepsilon_{v}^{p}} \left| d \,.\, P_{c0} . \left(r_{4}^{c} + r_{\acute{e}la}^{sc} \right) + p_{H} .\, e^{-\beta \,\varepsilon_{vH}^{p}} . \frac{|p| + p_{H} .\, e^{-\beta \left(\varepsilon_{v}^{p} - \varepsilon_{vH}^{p} \right)}}{||p| + p_{H} .\, e^{-\beta \left(\varepsilon_{v}^{p} - \varepsilon_{vH}^{p} \right)}|} \right| \end{aligned} \qquad \text{ eq 7-23}$$

$$f_{4,r_{a}^{c}}^{c} = d \cdot P_{c0} \cdot e^{-\beta \, \epsilon_{v}^{p}}$$
 éq 7-24

Enfin, on note que:

$$\mathbf{C} \cdot \mathbf{I} = 3 K \cdot \mathbf{I}; \quad \left(\mathbf{C} \cdot \mathbf{I}_{(k)}\right)_{ij} = \frac{3 \mu K}{E} \cdot \left(\left(\mathbf{I}_{(k)}\right)_{ij} + 2 \nu \delta_{ki} \delta_{kj}\right) \qquad ; \qquad \mathbf{C} \cdot \mathbf{S}_{(k)} = 2 \mu \mathbf{S}_{(k)} \qquad \text{eq 7-25}$$

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 59/67 Clé : R7.01.23 Révision

Révision c173ed655b50

8 Annexe 3 : Validité de la formulation multi-mécanisme de la loi de Hujeux

8.1 Représentation d'un état de contrainte par les cercles de Mohr

L'état de contrainte quelconque d'un point M peut être représenté par un tenseur du type :

$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{bmatrix}$$

Ce tenseur symétrique est diagonalisable, avec $\sigma_1 \ge \sigma_2 \ge \sigma_3$ les valeurs propres (ou contraintes principales) de σ telles que :

$$\mathbf{\sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$

La représentation de Mohr permet de représenter l'action de cet état de contrainte sur n'importe quelle facette de normale n tournant autour du point M (Figure 1). En effet, le vecteur contrainte s'exerçant sur cette facette s'écrit :

$$\begin{bmatrix} \sigma_n = \sigma_n \cdot n \\ \tau = \sigma_n - (\sigma_n \cdot n) n \end{bmatrix}$$

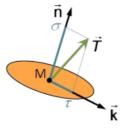


Figure 8-1 : Décomposition du vecteur contrainte s'exerçant sur une facette de normale n

La représentation de Mohr permet de représenter dans un même diagramme les composantes (σ_n, τ) :

$$\begin{cases}
\sigma_n = \sigma_n \cdot \mathbf{n} \\
\tau = \sqrt{\tau \cdot \tau}
\end{cases}$$

Ceci est illustré sur la Figure 2. Cette représentation aboutit au résultat très important qu'on met en exergue par la proposition suivante :

Proposition 1

Tout état de contrainte en un point M s'exerçant sur une facette de normale quelconque tournant autour de M **coïncide exactement**, dans la représentation de Mohr, à toute la zone en vert comprise entre les trois cercles de Mohr.

On tient ce résultat pour suffisamment connu pour qu'on n'ait pas à l'expliquer plus que ça. Il est très important car il définit le domaine de validité physique pour tout état de contrainte, et on va montrer que dans la loi de Hujeux, cette contrainte n'est pas respectée en 3D!

Responsable: M'JAHAD Sofia

Date : 22/11/2019 Page : 60/67 Clé : R7.01.23 Révision

c173ed655b50

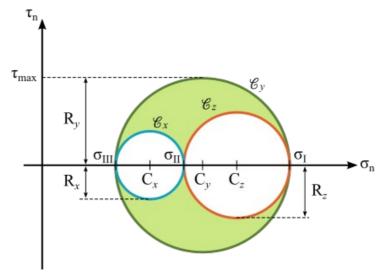


Figure 8-2 : Domaine de définition d'un état quelconque de contrainte dans le plan de Mohr

8.2 Critère de plasticité de type Mohr-Coulomb

Avant d'en arriver à Hujeux, il convient d'expliquer la relation entre la représentation de Mohr et un critère de rupture de type Mohr-Coulomb. L'expression du critère de Mohr-Coulomb est la suivante :

$$\underbrace{\frac{\sigma_1 - \sigma_3}{2}}_{R} - \sin(\phi) \underbrace{\frac{\sigma_1 + \sigma_3}{2}}_{C} \le 0$$

avec les contraintes principales $\sigma_1 \ge \sigma_2 \ge \sigma_3$.

Sa représentation dans le plan de Mohr est illustrée sur la Figure 3. La signification de ce critère est de comparer l'état de contraintes au point M, représenté par le cercle de centre $C = \frac{\sigma_1 + \sigma_3}{2}$ et de $\sigma_1 - \sigma_3$

rayon $R = \frac{\sigma_1 - \sigma_3}{2}$, à la droite de rupture d'angle ϕ . Il convient de noter deux points importants :

- L'état de contrainte au point M est représenté par le cercle ce centre C et de rayon R dans le plan de Mohr, et non par un point, car ce cercle est le lieu des couples (σ_n, τ) pour l'ensemble des plans de normales $n \perp n_2$ tournant autour de M ;
- La tangence du cercle et de la droite de rupture est obtenue grâce au terme $\sin(\phi)$, comme on peut le déduire à partir d'une analyse géométrique relativement simple ;

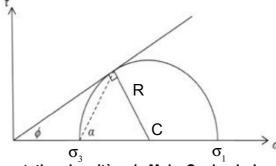


Figure 8-3 : Représentation du critère de Mohr-Coulomb dans le plan de Mohr

On résume les acquis de cette analyse par la proposition suivante :

Responsable: M'JAHAD Sofia

Date: 22/11/2019 Page: 61/67 Clé: R7.01.23

Révision

c173ed655b50

Proposition 2

Dans un critère de type Mohr-Coulomb, on compare l'état de contraintes au point M représenté par un cercle de centre C et de rayon R dans le plan de Mohr à une droite de rupture d'angle ϕ . L'expression mathématique d'un tel critère est de la forme : $R - \sin(\phi) C \le 0$.

8.3 Expression du critère de plasticité de Hujeux

Le critère de plasticité de Hujeux est un critère de type Mohr-Coulomb. On commence par décomposer le tenseur des contraintes par projection sur les trois plans fixes du repère cartésien, en procédant comme suit :

$$p_{\vec{e}_i}(\sigma) = \sigma - \sigma \cdot (\vec{e}_i \otimes \vec{e}_i) - (\vec{e}_i \otimes \vec{e}_i) \cdot \sigma + \sigma_{ii} \vec{e}_i \otimes \vec{e}_i$$

Où $p_{\vec{e}_i}(\sigma)$ est la projection du tenseur σ sur le plan de normale $\vec{e}_{i \in [x, y, z]}$. Réciproquement, on aura l'inverse de l'opérateur de projection :

$$\boldsymbol{\sigma} = \boldsymbol{p}_{\vec{e}_i}^{-1} \circ \boldsymbol{p}_{\vec{e}_i} (\boldsymbol{\sigma}) = \boldsymbol{p}_{\vec{e}_i} (\boldsymbol{\sigma}) + (\boldsymbol{\sigma} \cdot \vec{\boldsymbol{e}}_i)_T \otimes \vec{\boldsymbol{e}}_i + \vec{\boldsymbol{e}}_i \otimes (\boldsymbol{\sigma} \cdot \vec{\boldsymbol{e}}_i)_T + \sigma_{ii} \vec{\boldsymbol{e}}_i \otimes \vec{\boldsymbol{e}}_i$$

 $p_{\vec{e}}(\sigma)$ est appelé tenseur réduit et peut être exprimé dans chaque plan du repère cartésien suivant la normale considérée :

	e _x	e _y	e _z
$p_{\vec{e}_i}(\sigma)$	$\begin{bmatrix} \sigma_{yy} & \sigma_{yz} \\ \sigma_{zy} & \sigma_{zz} \end{bmatrix}$	$\begin{bmatrix} \sigma_{xx} & \sigma_{xz} \\ \sigma_{zx} & \sigma_{zz} \end{bmatrix}$	$\begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$

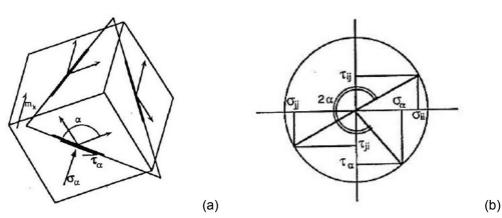


Figure 8-4 : Représentation des tenseurs de contraintes réduits dans chaque plan orthotrope du repère cartésien (a) et dans le plan de Mohr (b)

Le critère de Hujeux s'écrit alors comme suit :

$$R - \sin(\phi)C \le 0$$

avec:

$$R = \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}$$

$$C = r F\left(\frac{\sigma_{xx} + \sigma_{yy}}{2}; \epsilon_v^p\right) \frac{\sigma_{xx} + \sigma_{yy}}{2}$$

Il est clair d'après la proposition 2 que le critère de Hujeux est un critère de type Mohr-Coulomb. En conséquence, il est possible de représenter le tenseur des contraintes réduit par un cercle de Mohr Manuel de référence Fascicule r7.01: Modélisations pour le Génie Civil et les géomatériaux

Titre: Loi de comportement cyclique de Hujeux pour les so[...] Responsable: M'JAHAD Sofia

Clé: R7.01.23 Révision

Date: 22/11/2019 Page: 62/67

c173ed655b50

dans le plan de Mohr. La signification du critère est alors de comparer le cercle de centre C et de rayon R à la droite de rupture d'angle ϕ .

Remarques :

Comment se justifie cette formulation ? D'après notre compréhension, il semble que :

- Le critère de Hujeux est dérivé par analogie du critère de Mohr-Coulomb appliqué à des chargements triaxiaux;
- La décomposition du tenseur des contraintes étant bijective et inversible est justifiée mathématiquement, et donc agréable à l'esprit ;

8.4 Validité du critère de Hujeux

Pour montrer que la décomposition des contraintes utilisée dans la loi de Hujeux n'est pas valable physiquement, il nous suffit de trouver un contre-exemple à la proposition 1. Or, en trouver un en 3D est relativement trivial : il suffit de considérer un état de contrainte 3D quelconque.

Soit par exemple l'état de contrainte suivant :

$$\sigma = \begin{bmatrix} 0.6 & -0.1 & 0.05 \\ -0.1 & 0.4 & 0.1 \\ 0.05 & 0.1 & 0.3 \end{bmatrix}$$
 (en MPa)

On obtient les contraintes principales suivantes :

$$\begin{cases} \sigma_1 = 0.6416 \\ \sigma_2 = 0.4445 \\ \sigma_3 = 0.2139 \end{cases}$$
 (en MPa)

D'où on déduit les cercles de Mohr.

On calcule ensuite les cercles de Hujeux dans le plan de Mohr. Pour ce faire, on calcule pour le premier cercle:

$$R = \sqrt{\left(\frac{\sigma_{xx} - \sigma_{yy}}{2}\right)^2 + \sigma_{xy}^2}$$

$$C = \frac{\sigma_{xx} + \sigma_{yy}}{2}$$

Et ainsi de suite pour les deux autres.

Enfin, il est intéressant de caractériser le lieu des contraintes réelles (σ_n, τ) dans le plan de Mohr donné par une normale $n_{i \in [x, y, z]}$ tournant autour du point M dans le plan orthotrope de normale $\vec{e}_{i \in \{x, y, z\}}$. L'expression des normales est la suivante :

$$\boldsymbol{n}_{x} = \begin{pmatrix} 0 \\ \cos(\theta) \\ \sin(\theta) \end{pmatrix}; \quad \boldsymbol{n}_{y} = \begin{pmatrix} \cos(\theta) \\ 0 \\ \sin(\theta) \end{pmatrix}; \quad \boldsymbol{n}_{z} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \\ 0 \end{pmatrix}$$

On calcule alors:

$$\begin{bmatrix} \boldsymbol{\sigma}_{n,i} = \boldsymbol{\sigma}_{n}. \boldsymbol{n}_{i} \\ \boldsymbol{\tau}_{i} = \boldsymbol{\sigma}_{n,i} - (\boldsymbol{\sigma}_{n,i}. \boldsymbol{n}_{i}) \boldsymbol{n}_{i} \end{bmatrix}$$

La contrainte réelle s'écrit :

$$\begin{vmatrix} \sigma_{n,i} = \sigma_{n,i} \cdot \mathbf{n}_i \\ \tau_i = \sqrt{\tau_i \cdot \tau_i} \end{vmatrix}$$

Les solutions sont présentées dans la Figure 5 :

Les cercles de Mohr sont représentés en traits noirs pointillés ;

Responsable : M'JAHAD Sofia Clé : R7.01.23 Révision

c173ed655b50

Date: 22/11/2019 Page: 63/67

- Les cercles de Hujeux sont représentés en traits pleins colorés ;
- Le lieu des contraintes réelles dans les plans orthotropes est représenté en traits pointillés colorés de la même couleur que les cercles de Hujeux correspondants ;

D'après la proposition 1, il est clair que les cercles de Hujeux ne correspondent pas à un état de contrainte réel autour du point M. L'état de contrainte réel correspondant devrait plutôt être celui donné en pointillés, lequel vérifie bien la proposition 1. On en conclut que le critère de Hujeux, qui compare le cercle de Hujeux à une droite dans le plan de Mohr, ne représente pas non plus l'action phénoménologique d'un mécanisme réel.

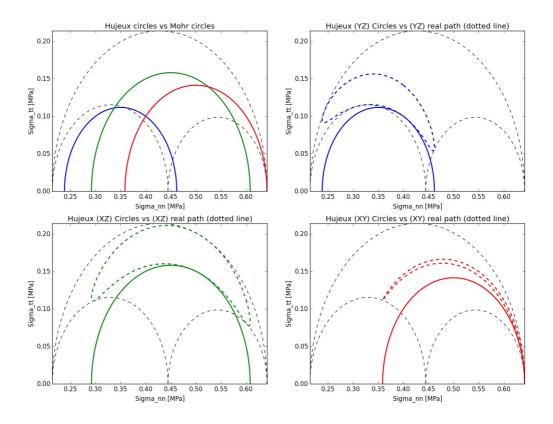


Figure 8-5 : Représentation de l'état de contrainte au point M dans le plan de Mohr : les cercles de Mohr sont représentés en pointillés noirs ; les cercles de Hujeux en traits pleins colorés ; le lieu des contraintes réelles dans les 3 plans orthotropes cartésiens en traits pointillés colorés avec la même couleur que les cercles de Hujeux correspondants.

Remarque

Il est intéressant de noter que l'on retrouve les cercles de Hujeux en procédant comme suit :

$$\mathbf{y}_{x} = \begin{pmatrix} 0 \\ -\sin(\theta) \\ \cos(\theta) \end{pmatrix}; \quad \mathbf{t}_{y} = \begin{pmatrix} -\sin(\theta) \\ 0 \\ \cos(\theta) \end{pmatrix}; \quad \mathbf{t}_{z} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \\ 0 \end{pmatrix};$$

On calcule alors:

$$\begin{cases} \sigma_{n,i} = \sigma_{n,i} \cdot n_i \\ \tau_i = \sigma_{n,i} \cdot t_i \end{cases}$$

Avec $\sigma_{n,i} = \sigma \cdot n_i$

8.5 Conclusions

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 64/67 Clé : R7.01.23 Révision

c173ed655b50

- L'état de contrainte utilisé pour former le critère de Hujeux est purement théorique, mais **non existant**. En ce sens, il ne traduit pas un mécanisme réel pour un état de contrainte tridimensionnel ;
- Par contre, pour un état de contraintes « plan », c'est-à-dire celui contenu dans un plan perpendiculaire à une contrainte principale, le cercle de Hujeux coïncide parfaitement avec le cercle de Mohr. C'est le cas par exemple des problèmes en déformations ou en contraintes planes, pour lesquels le critère de Hujeux reste donc valable;
- La formulation d'un critère 3D valide passe par l'utilisation des invariants de contrainte (I_1, I_2, I_3 ou les contraintes principales);

Date: 22/11/2019 Page: 65/67 Révision Responsable: M'JAHAD Sofia Clé: R7.01.23

c173ed655b50

Annexe 4 : Stratégie de redécoupage interne de la loide 9 Hujeux

Le redécoupage interne programmé dans la loi de Hujeux se produit à un double niveau :

- au niveau de la subroutine générique REDECE, point d'entrée de toutes les lois de comportements (LdC) dans Code Aster;
- au niveau de la loi de Hujeux elle-même ;

L a routine REDECE gère de façon générique le redécoupage interne pour toutes les lois de comportement. Le synoptique de la routine est donnée sur la page suivante. L'idée est basée sur l'interception d'un code retour envoyé par la LdC :

```
IRET = | 0 si l'intégration de la LdC a réussi
          I 1 si elle a échoué
          | 2 si elle a échoué
```

- Lorsque l'intégration de la LdC a échoué, et si IRET = 2, on sort directement de la routine ;
- Lorsque l'intégration de la LdC a échoué, et si IRET = 1, on tente un redécoupage interne en fonction de la valeur de ITER_INTE_PAS :

```
ITER INTE PAS | = -1, 0, 1 on sort de la routine
                             on redécoupe par ITER INTE PAS sur 3 niveaux
                  | > 1
                  | < -1
                             on redécoupe par — ITER INTE PAS sur 3 niveaux
```

Notons que le nombre maximal de redécoupages est ainsi de :

```
NB MAX=ITER INTE PAS\times (2^0+2^1+2^2)=7\timesITER INTE PAS
```

De plus, comme dans la routine de la loi de Hujeux, il y a aussi un redécoupage par ITER INTE MAXI, le nombre maximal de redécoupages pour la loi de Hujeux est ainsi de :

```
NB_MAX=7×ITER_INTE_PAS×ITER_INTE_MAXI
```

Enfin, la matrice tangente consistante récupérée est moyennée sur l'ensemble des pas de redécoupages. Cela n'a de sens que si celle-ci présente des propriétés de continuité suffisantes d'un sous-pas à l'autre, ce qui n'est généralement pas le cas des lois multi-mécanismes. Le synoptique de cet algorithme est donné dans la Figure E-1.

Dans la Figure E-2 est donné le synoptique du nouvel algorithme d'intégration du comportement avec les fléchages suite à un échec (IRET = 1) selon la valeur de ALGO INTE .

Responsable: M'JAHAD Sofia

Date : 22/11/2019 Page : 66/67 Clé : R7.01.23 Révision

c173ed655b50

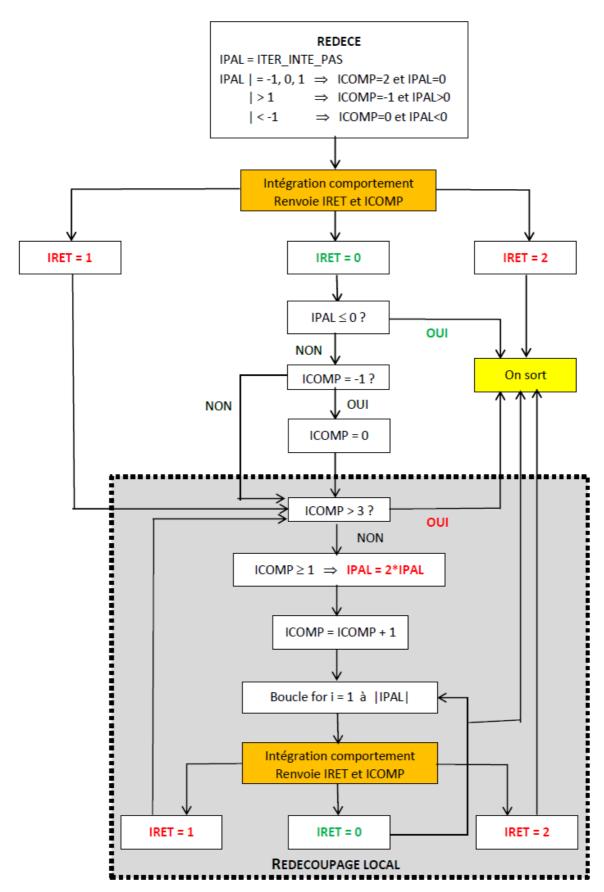


Figure 9-1 – Algorithme d'intégration du comportement au niveau de redece.F90

Responsable : M'JAHAD Sofia

Date : 22/11/2019 Page : 67/67 Clé : R7.01.23 Révision

c173ed655b50

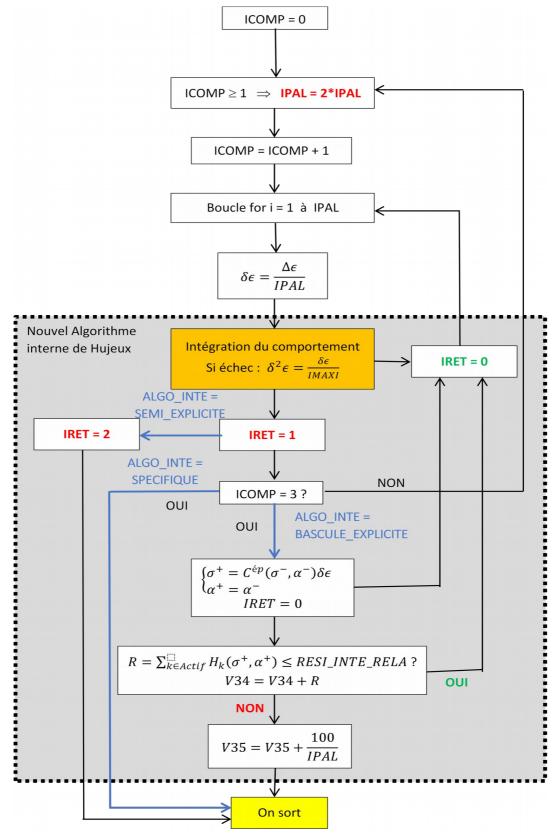


Figure 9-2 – Nouvel algorithme d'intégration du comportement au niveau de la loi Hujeux suivant les 3 modes de résolution (IPAL = ITER INTE PAS – IMAXI = ITER INTE MAXI)