Responsable: FLÉJOU Jean-Luc

Clé: V5.02.138 Révision

Date: 30/07/2015 Page: 1/7

f36ffc4771d2

SDNL138 - Fréquences et modes propres de vibration d'un cadre auto-contraint

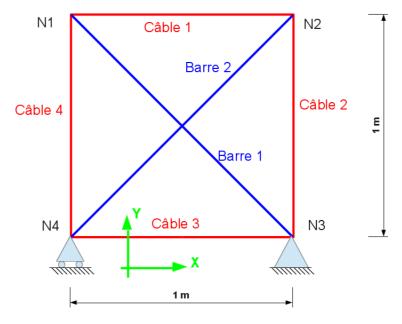
L'objectif de ce test est de valider le calcul des fréquences et modes de vibrations d'un cadre auto-contraint. Les efforts dans la structure sont uniquement générés par la mise en tension des câbles. Le principe du cas test est de :

- réaliser un calcul non-linéaire,
- récupérer les différents champs à un instant donné.
- calculer les matrices de raideur et de masse,
- calculer les fréquences et modes de vibrations.

Plusieurs modélisations sont réalisées :

- calcul avec STAT NON LINE, utilisation des opérateurs CALC MATR ELEM, ASSE MATRICE et COMB MATR ASSE pour l'assemblage des matrices. Ensuite calcul des fréquences et modes de vibrations avec l'opérateur CALC MODES.
- calcul avec DYNA NON LINE et l'option MODE VIBR.
- calcul avec STAT NON LINE, détermination de la matrice de raideur à l'aide de l'opérateur CALCUL. Ensuite calcul des fréquences et modes de vibrations avec l'opérateur CALC MODES.

Les résultats sont comparés à une solution théorique.


Date: 30/07/2015 Page: 2/7 Responsable : FLÉJOU Jean-Luc Clé: V5.02.138 Révision

f36ffc4771d2

Problème de référence

1.1 Géométrie

On considère un cadre constitué de 2 barres et de 4 câbles.

1.2 Propriétés du matériau

Les matériaux sont élastiques, leurs propriétés sont :

Pour les barres :

E = 2.1E + 11 $\alpha = 0.0$ $\rho = 7800.0$

Pour les câbles :

E = 2.1E + 11 $\alpha = 1.0E - 05$ $\rho = 7800.0$

1.3 Caractéristiques mécaniques

Les seules caractéristiques nécessaires sont les sections des différents éléments.

pour les barres : \dot{A} =1.0E-04

pour les câbles : A=5.026E-05

1.4 Conditions aux limites et chargements

En déplacement :

nœud N3, tous les déplacements sont bloqués : DX = DY = DZ = 0.0

nœud N4, déplacements bloqués suivant Y et Z : DY = DZ = 0.0

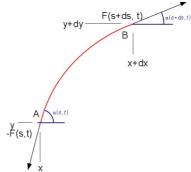
nœuds N1, N2: déplacements bloqué suivant Z: DZ=0.0

Le chargement est appliqué par la mise en tension des câbles. Une température fictive de -200°C, est imposée aux éléments de câbles en 20 pas de chargement.

1.5 Conditions initiales

Sans objet.

Responsable : FLÉJOU Jean-Luc


Date: 30/07/2015 Page: 3/7 Clé: V5.02.138 Révision

f36ffc4771d2

2 Solution de référence

2.1 Méthode de calcul

La solution de référence retenue est celle obtenue en résolvant l'équation des cordes vibrantes :

L'équation des cordes vibrantes est :

$$\frac{\partial^2 y}{\partial t^2} = \frac{F_0}{\rho S} \frac{\partial^2 y}{\partial x^2}$$

avec

F₀: tension dans la corde,

 $\boldsymbol{\rho}_{}$: masse volumique,

S : section de la corde.

Pour une corde de longueur L, fixée à ces 2 extrémités, la n^{ieme} fréquence propre de vibration est :

$$f = \frac{n}{2L} \sqrt{\frac{F_0}{\rho S}}$$

2.2 Grandeurs et résultats de référence

Les grandeurs testées sont les fréquences propres de vibrations des câbles pour 2 instants de calcul, qui correspondent à 2 tensions différentes.

Pas	Tension des câbles	Fréquence
10	6171.050459855 N	62.73227096292042 <i>Hz</i>
20	12345 2954376 <i>N</i>	88 72830898253936 Hz

2.3 Incertitudes sur la solution

La solution de l'équation des cordes vibrantes est obtenue sous les hypothèses suivantes :

- les mouvements de la corde autour de sa position d'équilibre restent petits.
- les variations de l'angle α restent petits.
- la variation de la tension de la corde en mouvement reste petite.

Sous ces hypothèses, la solution de référence est sans incertitudes.

Date: 30/07/2015 Page: 4/7 Responsable : FLÉJOU Jean-Luc Clé: V5.02.138 Révision

f36ffc4771d2

Modélisation A 3

Caractéristiques de la modélisation 3.1

Modélisation avec des éléments de BARRE et de CABLE.

3.2 Caractéristiques du maillage

Le maillage contient :

- 2 éléments de type BARRE.
- 60 éléments de type CABLE. (15 éléments par câbles).

3.3 Grandeurs testées et résultats

On teste la valeur de la 1ère fréquence propre de vibration des câbles. Comme les 4 câbles ont la même tension, il existe donc des modes de vibration multiples. Six modes multiples sont testés, pour chacun des pas.

Pas	Type de référence	Mode	Valeur de référence	Tolérance
10	'ANALYTIQUE'	Valeur identique pour les 6 premiers modes multiples	62.732270963 <i>Hz</i>	0.5%
	'NON_REGRESSION'	1	62.7962 <i>Hz</i>	défaut
	'NON_REGRESSION'	2	62.9083 <i>Hz</i>	défaut
	'NON_REGRESSION'	3	62.9458 <i>Hz</i>	défaut
	'NON_REGRESSION'	4	62.9626 <i>Hz</i>	défaut
	'NON_REGRESSION'	5	62.9626 <i>Hz</i>	défaut
	'NON_REGRESSION'	6	62.9626 <i>Hz</i>	défaut
20	'ANALYTIQUE'	Valeur identique pour les 6 premiers modes multiples	88.728308982 <i>Hz</i>	0.5%
	'NON_REGRESSION'	1	88.5701 <i>Hz</i>	défaut
	'NON_REGRESSION'	2	88.8995 <i>Hz</i>	défaut
	'NON_REGRESSION'	3	89.0065 <i>Hz</i>	défaut
	'NON_REGRESSION'	4	89.0541 Hz	défaut
	'NON_REGRESSION'	5	89.0541 <i>Hz</i>	défaut
	'NON_REGRESSION'	6	89.0541 Hz	défaut

3.4 Remarques

Le calcul est réalisé avec l'opérateur STAT NON LINE, puis les opérateurs CALC MATR ELEM, ASSE MATRICE et COMB MATR ASSE pour l'assemblage des matrices. Le calcul des fréquences et modes de vibration est réalisé avec l'opérateur CALC MODES.

Responsable : FLÉJOU Jean-Luc

Date: 30/07/2015 Page: 5/7 Clé: V5.02.138 Révision

f36ffc4771d2

4 Modélisation B

4.1 Caractéristiques de la modélisation

Modélisation avec des éléments de BARRE et de CABLE.

4.2 Caractéristiques du maillage

Le maillage contient :

- 2 éléments de type BARRE.
- 60 éléments de type CABLE. (15 éléments par câbles).

4.3 Grandeurs testées et résultats

On teste la 1ère fréquence propre de vibration des câbles. L'opérateur DYNA_NON_LINE avec l'option MODE VIBR ne permet pas de connaître les suivantes. C'est un test de non régression.

Pas	Type de référence	Valeur calculée	Tolérance
10	'NON_REGRESSION'	62.7962 Hz	défaut
20	'NON_REGRESSION'	88.5701 <i>Hz</i>	défaut

Remarque : Pour mémoire, les fréquences de vibrations de références sont : $62.732270963\,Hz$ et $88.728308982\,Hz$

4.4 Remarques

Le calcul est réalisé avec l'opérateur DYNA_NON_LINE, avec le mot clef facteur MODE_VIBR. L'opérateur ne permet de connaître qu'une seule fréquence qui est affichée dans le fichier message et mémorisé dans le paramètre FREQ de la structure de donnée produite par l'opérateur. C'est pourquoi c'est un test de non régression.

Responsable : FLÉJOÚ Jean-Luc Clé : V5.02.138 Révision

f36ffc4771d2

Date: 30/07/2015 Page: 6/7

5 Modélisation C

5.1 Caractéristiques de la modélisation

Modélisation avec des éléments de BARRE et de CABLE.

5.2 Caractéristiques du maillage

Le maillage contient :

- 2 éléments de type BARRE.
- 60 éléments de type CABLE. (15 éléments par câbles).

5.3 Grandeurs testées et résultats

On teste la 1ère fréquence propre de vibration des câbles au dernier pas du calcul, PAS = 20. Comme les 4 câbles ont la même tension, il existe donc des modes de vibration multiples. Six modes multiples sont testés. C'est un test de non régression.

Fréquence	Type de référence	Valeur calculée	Tolérance
1	'NON_REGRESSION'	88.5312	défaut
2	'NON_REGRESSION'	88.8603	défaut
3	'NON_REGRESSION'	88.9670	défaut
4	'NON_REGRESSION'	89.0146	défaut
5	'NON_REGRESSION'	89.0146	défaut
6	'NON REGRESSION'	89.0146	défaut

Remarque:

Pour mémoire la fréquence de référence est 88.728308982 Hz.

5.4 Remarques

Le 1er calcul est réalisé avec l'opérateur STAT_NON_LINE. L'opérateur CALCUL qui a comme entrées les champs de déplacement, de contrainte, de variables internes ainsi qu'un incrément des déplacements permet de connaître la matrice de raideur du système. Le calcul des fréquences et modes de vibrations est réalisé avec l'opérateur CALC_MODES en utilisant la matrice de raideur qui provient de l'opérateur CALCUL.

L'opérateur CALCUL fait l'hypothèse de linéarité des champs en fonction de l'incrément des déplacements. Or, dans le cas des câbles cette hypothèse n'est pas tout à fait "juste". Cet incrément de déplacement doit permettre d'approximer la matrice la tangente, il doit donc être "petit". Il est déterminé par une étude de sensibilité. C'est la raison pour laquelle cette modélisation est un test de non régression.

Responsable : FLÉJOU Jean-Luc

Date: 30/07/2015 Page: 7/7 Clé: V5.02.138 Révision

f36ffc4771d2

6 Synthèse des résultats

Les résultats des modélisations A, B et C sont en bonne adéquation avec la solution de référence.

Les résultats de la modélisation C (à but uniquement pédagogique) nécessite une étude de sensibilité pour trouver l'incrément de déplacement qui permet d'approximer la matrice tangente et de s'approcher de la solution de référence. Cela est dû à l'hypothèse de linéarité de l'opérateur CALCUL.