Date: 29/05/2013 Page: 1/6

Révision bdb68f3cd504

Clé: V5.02.102

Titre : SDNL102 - Poutre soumise à un champ de vitesse de [...]

Responsable : FLÉJOU Jean-Luc

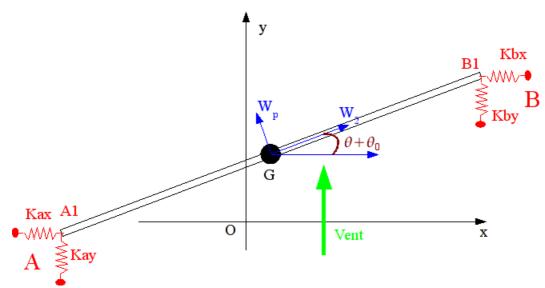
SDNL102 - Poutre soumise à un champ de vitesse

Résumé:

de vent

Ce test concerne la validation de l'application des chargements de vent sur les éléments linéiques. Le chargement est décrit par des champs de vitesses de vent.

- Ce problème permet de tester :
- les éléments finis linéiques [barres, câbles, poutres (sauf les poutres courbes)] avec des chargements suiveur de nature "vent",
- les chargements à l'aide des vitesses de vent :
 - lecture des données des champs de vent,
 - projection des champs de vent attachés au nuage de points sur le maillage déformé de la structure,
 - calcul de la vitesse relative,
- la prise en compte de la fonction donnant la force répartie en fonction de la vitesse relative de la structure,
- la réactualisation de la géométrie pour tenir compte des grands déplacements et des grandes rotations.


Responsable : FLÉJOU Jean-Luc

Date : 29/05/2013 Page : 2/6 Clé : V5.02.102 Révision

bdb68f3cd504

1 Problème de référence

1.1 Géométrie

Longueur de la poutre : 1.5m

Raideurs des discrets : kax , kay , kbx , kby

1.2 Propriétés du matériau

Matériau pour l'élément linéique : E = 2.0E + 10 , $\rho = 1000.0$

Caractéristiques mécanique de la poutre : section = 'CERCLE', rayon = 0.1, ep = 0.1

La raideur des ressorts :

Kxa Kya Kxb Kyb 10 *N/m* 20 *N/m* 25 *N/m* 22 *N/m*

1.3 Conditions aux limites et chargements

Aux points A et B: blocages des degrés de liberté: DX, DY, DZ

Aux points AI et BI: blocages des degrés de liberté: DZ, DRX, DRY

Les ressorts sont modélisés par des discrets sans dimensions. Les nœuds A et A1, B et B1 sont géométriquement confondus.

Les caractéristiques du champ de vitesse de vent, suivant l'axe y:

$$Vy=20.\sin(\omega \cdot t)$$
, avec $\omega=2.\pi$. f et $f=0.2$ Hz

1.4 Conditions initiales

La poutre fait un angle de 30° ($\theta_0 = 30^{\circ}$) par rapport à l'axe x .

Titre : SDNL102 - Poutre soumise à un champ de vitesse de [...] Responsable : FLÉJOU Jean-Luc Date : 29/05/2013 Page : 3/6 Clé : V5.02.102 Révision

bdb68f3cd504

2 Solution de référence

2.1 Équations d'équilibre

L'étude est réalisée autour de la position initiale de la structure dans le plan xy. Les équations sont écrites au centre de gravité de la poutre.

Effort d'inertie :

$$M \cdot \gamma_g = \begin{cases} Mx'' \\ My'' \\ \frac{M L^2}{12} \cdot \theta'' \end{cases}$$

Effort au point A1

$$Fa = \begin{cases} -kxa \cdot \delta xa \\ -kya \cdot \delta ya \\ L \cdot (\delta ya \cdot kya \cdot \cos(\theta_0 + \theta) - \delta xa \cdot kxa \cdot \sin(\theta_0 + \theta))/2 \end{cases} \text{ avec les déplacements du point } A1 \\ \delta xa = L \cdot \cos(\theta_0)/2 - L \cdot \cos(\theta_0 + \theta)/2 + x \\ \delta ya = L \cdot \sin(\theta_0)/2 - L \cdot \sin(\theta_0 + \theta)/2 + y \end{cases}$$

Effort au point B1

$$Fb = \begin{cases} -kxb \cdot \delta xb \\ -kyb \cdot \delta yb \\ L \cdot (-\delta yb \cdot kyb \cdot \cos(\theta_0 + \theta) + \delta xb \cdot kxb \cdot \sin(\theta_0 + \theta))/2 \end{cases} \text{ avec les déplacements du point } B1 \\ \delta xb = -L \cdot \cos(\theta_0)/2 + L \cdot \cos(\theta_0 + \theta)/2 + xb \cdot \delta xb \cdot kxb \cdot \sin(\theta_0 + \theta)/2 + xb \cdot \delta xb \cdot kxb \cdot \sin(\theta_0 + \theta)/2 + xb \cdot \delta xb \cdot kxb \cdot \sin(\theta_0 + \theta)/2 + xb \cdot \delta xb \cdot kxb \cdot \sin(\theta_0 + \theta)/2 + xb \cdot \delta xb \cdot kxb \cdot \delta xb \cdot kxb \cdot \delta xb \cdot kxb \cdot \delta xb \cdot \delta$$

Effort dû au vent

Vitesse relative d'un point M

$$V_{r} = \begin{cases} Vvx + s. \sin(\theta_{0} + \theta). \theta' - x' \\ Vvy - s. \cos(\theta_{0} + \theta). \theta' - y' \\ 0 \end{cases}$$

aved

s: l'abscisse curviligne du point M sur la poutre $s{\in}[-L/2,L/2]$ Vvx, Vvy: vitesse du vent suivant l'axe x et l'axe y.

• Vitesse relative perpendiculaire à la barre au point M :

$$V_{p} = \begin{cases} \sin(\theta_{0} + \theta) \cdot (-Vvy \cdot \cos(\theta_{0} + \theta) + Vvx \cdot \sin(\theta_{0} + \theta) + s \cdot \theta' - \sin(\theta_{0} + \theta) \cdot x' + \cos(\theta_{0} + \theta) \cdot y') \\ \cos(\theta_{0} + \theta) \cdot (Vvy \cdot \cos(\theta_{0} + \theta) - Vvx \cdot \sin(\theta_{0} + \theta) - s \cdot \theta' + \sin(\theta_{0} + \theta) \cdot x' - \cos(\theta_{0} + \theta) \cdot y') \\ 0 \end{cases}$$

Force due au vent en un point $\,M\,$

$$Fvent_{(M)} = Fcx_{(M)} \cdot \frac{V_p}{\|V_p\|} \text{ dans notre cas on choisit } Fcx_{(M)} = \|V_p\|$$
 on obtient donc
$$Fvent_{(M)} = V_p$$

Responsable : FLÉJOU Jean-Luc Clé : V5.02.102 Révision

Revision bdb68f3cd504

Date: 29/05/2013 Page: 4/6

• Résultante de la force due au vent sur la barre

$$Fvent = \begin{cases} L \cdot \sin(\theta_{0} + \theta) \cdot ((-Vvy + y') \cdot \cos(\theta_{0} + \theta) + (Vvx - x') \cdot \sin(\theta_{0} + \theta)) \\ L \cdot \cos(\theta_{0} + \theta) \cdot ((Vvy - y') \cdot \cos(\theta_{0} + \theta) + (-Vvx + x') \cdot \sin(\theta_{0} + \theta)) \\ -L^{3} \cdot \theta'/12 \end{cases}$$

Équation finale de la dynamique

$$M \cdot \gamma_g = Fa + Fb + Fvent$$

2.2 Grandeurs et résultats de référence

Déplacements et rotation du point G aux instants : $2.0 \mathrm{sec}$, $3.0 \mathrm{sec}$, $4.0 \mathrm{sec}$, $5.0 \mathrm{sec}$ et $6.0 \mathrm{sec}$.

2.3 Incertitudes sur la solution

Aucune. La résolution de l'équation d'équilibre se fait par une méthode d'intégration de Runge Kutta d'ordre 4.

Responsable : FLÉJOU Jean-Luc

Date : 29/05/2013 Page : 5/6 Clé : V5.02.102 Révision

bdb68f3cd504

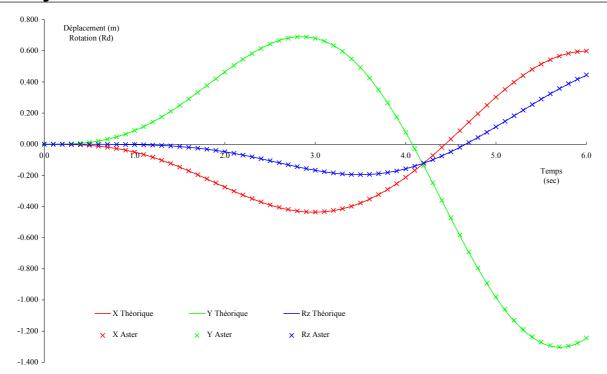
3 Modélisation A

3.1 Caractéristiques de la modélisation et du maillage

L'élément linéique : 'poutre' découpée en 12 mailles.

Les discrets : 'DIS T'

3.2 Grandeurs testées et résultats


Temps 2.0sec	Analytique	Erreur absolue	Erreur relative
x(m)	-0.27571	0.00070	0.00255
y(m)	0.46478	0.00120	0.00259
Rz(rd)	-0.04851	0.00001	0.00027
Temps 3.0sec	Analytique	Erreur absolue	Erreur relative
x(m)	-0.43640	0.00118	0.00271
y(m)	0.68149	0.00190	0.00279
Rz(rd)	-0.16767	0.00079	0.00472
Temps 4.0sec	Analytique	Erreur absolue	Erreur relative
x(m)	-0.21266	0.00043	0.00201
y(m)	0.07494	0.00111	0.01476
Rz(rd)	-0.15769	0.00026	0.00163
Temps 5.0sec	Analytique	Erreur absolue	Erreur relative
x(m)	0.30290	0.00108	0.00357
y(m)	-0.98487	0.00536	0.00544
Rz(rd)	0.11188	0.00027	0.00241
Temps6.0sec	Analytique	Erreur absolue	Erreur relative
x(m)	0.59847	0.00032	0.00054
y(m)	-1.24735	0.00322	0.00258
Rz(rd)	0.44284	0.00251	0.00566

Responsable : FLÉJOU Jean-Luc

Date : 29/05/2013 Page : 6/6 Clé : V5.02.102 Révision

bdb68f3cd504

4 Synthèse des résultats

Comparaison entre les résultats théoriques et ceux de Code_Aster.