Date: 27/06/2012 Page: 1/13

Titre : SDND102 - Réponse sismique d'un système masse-ress[...]

Responsable : DEVESA Georges Clé : V5.01.102 Révision 65a0680f3eac

SDND102 - Réponse sismique d'un système masse-ressort non linéaire multi-supporté

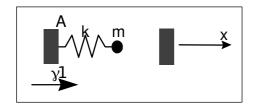
Résumé

Le problème consiste à analyser la réponse d'une structure mécanique, modélisée par deux systèmes masse-ressort non amortis, soumis à un chargement sismique de type harmonique, avec possibilité de choc.

On teste l'élément discret en traction-compression, le calcul des modes propres et des modes statiques, le calcul de la réponse transitoire par recombinaison modale non linéaire d'une structure soumise à un accélérogramme (modélisation A) ainsi que le calcul de la réponse sismique transitoire directe d'une structure non linéaire (modélisation B).

Ce cas test sert aussi à valider un calcul avec résolution explicite sur les accélérations et choc (modélisations C et D) en comparant les résultats respectivement issus de DYNA_NON_LINE avec un schéma de temps implicite, puis explicite non dissipatif des différences centrées et, enfin, explicite dissipatif de TCHAMWA.

Les résultats obtenus sont en très bon accord avec les résultats de référence.


Clé: V5.01.102 Révision Responsable: DEVESA Georges

65a0680f3eac

Problème de référence

1.1 Géométrie

On compare la réponse sismique d'un système masse-ressort à un degré de liberté pouvant impacter une paroi fixe (problème 1) à celle de deux systèmes masse-ressort identiques pouvant s'entrechoquer et soumis à la même sollicitation sismique (problème 2).

Date: 27/06/2012 Page: 2/13

Problème 1

Problème 2

1.2 Propriétés de matériaux

Raideur des ressorts : k = 98696 N/m.

Masse ponctuelle : m = 25 kg .

Pour le problème 1 (impact sur une paroi rigide), la rigidité normale de choc vaut $K_{choc} = 5.76 \, 10^7 \, N/m$. Quant au problème 2 (choc de deux structures déformables), elle vaut $K_{choc} = 2.8810^7 N/m$.

Dans les deux cas, l'amortissement de choc est nul.

1.3 **Conditions aux limites et chargements**

Conditions aux limites

Les seuls déplacements autorisés sont les translations selon l'axe x. Les points A, B et C sont encastrés : dx = dy = dz = 0.

Chargement

Les points d'ancrage A et B sont soumis à une accélération suivant la direction x : $\gamma_1(t) = \sin \omega t$ avec $\omega = 20. \pi s^{-1}$ et le point C à une accélération $\gamma_2(t) = -\sin \omega t$.

1.4 **Conditions initiales**

Dans les deux cas, les systèmes masse-ressort sont initialement au repos :

à t=0, dx(0)=0, dx/dt(0)=0 en tout point.

Pour le problème 1, la masse est séparée de la paroi fixe du jeu j=5. $10^{-4} m$. Quant au problème 2, les masses sont séparées du jeu J=2 $j=10^{-3}$ m.

Date: 27/06/2012 Page: 3/13 Clé: V5.01.102 Révision Responsable: DEVESA Georges

65a0680f3eac

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Il s'agit de comparer la réponse d'un système symétrique constitué par deux systèmes masse-ressort identiques à la réponse d'un système masse-ressort. Les deux problèmes, exposés en détail dans la référence [bib2], sont sollicités par le même accélérogramme.

On calcule dans un premier temps les fréquences propres f_i , les vecteurs propres associés normalisés par rapport à la masse modale Φ_{Ni} et les modes statiques Ψ du système (valeurs analytiques). On calcule ensuite la réponse généralisée du système multi-supporté en résolvant analytiquement l'intégrale de Duhamel [bib1]. Enfin, on restitue sur la base physique le déplacement relatif des nœuds de choc ce qui nous permet, après avoir calculé le champ des déplacements d'entraînement, de calculer le champ des déplacements absolus.

On calcule la fonction diff définie comme étant la différence entre le déplacement absolu du nœud choquant sur un obstacle mobile et celui du nœud choquant sur un obstacle fixe. On vérifie qu'elle est bien nulle pour différents instants.

2.2 Résultats de référence

Déplacements relatifs et absolus aux nœuds de choc.

2.3 Incertitude sur la solution

Comparaison entre deux modélisations équivalentes.

2.4 Références bibliographiques

- 1) J.S. PRZEMIENIECKI: Theory of matrix structural analysis New York, Mac Graw Hill, 1968, p. 351-357.
- 2) Fe. WAECKEL: Utilisation et validation des développements réalisés pour calculer la réponse sismique de structures multi-supportées - HP52/96.002.

Titre : SDND102 - Réponse sismique d'un système masse-ress[...] Responsable : DEVESA Georges Date: 27/06/2012 Page: 4/13 Clé: V5.01.102 Révision 65a0680f3eac

3 Modélisation A

3.1 Caractéristiques de la modélisation

Les systèmes masse-ressort sont modélisés par des éléments discrets à 3 degrés de liberté DIS T.

Modélisation du problème 1 :

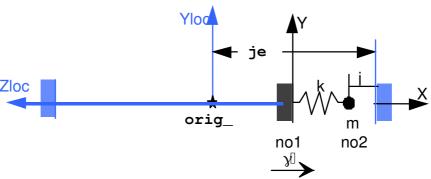


Figure 3.1-a: Modélisation d'un système masse-ressort impactant une paroi rigide

Le nœud no1 est soumis à une accélération imposée $y_1(t)$. On calcule le déplacement relatif du nœud no2, son déplacement d'entraînement et son déplacement absolu.

Un obstacle de type <code>PLAN_Z</code> (deux plans parallèles) est retenu pour simuler l'impact du système masse-ressort sur une paroi rigide. La normale au plan de choc est l'axe Z, <code>NORM_OBST</code>: (0. 0. 1.). Pour ne pas être gêné par le rebond de l'oscillateur sur le plan symétrique, on repousse celui-ci très loin (cf. [Figure 3.1-a]). D'où:

- [1] l'origine de l'obstacle ORIG OBST: (-1. 0. 0.);
- [2] et le jeu correspondant jeu: 1.1005

Modélisation du problème 2 :

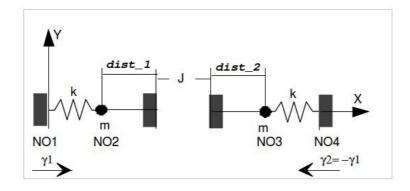


Figure 3.1-b: Modélisation de deux systèmes masse-ressort qui s'entrechoquent

Le nœud NO1 est soumis à une accélération imposée $\gamma_1(t)$, le nœud NO4 à $\gamma_2(t) = -\gamma_1(t)$. On calcule le déplacement relatif des nœuds NO2 et NO3, leur déplacement d'entraînement et leur déplacement absolu.

Responsable : DEVESA Georges

Date : 27/06/2012 Page : 5/13 Clé : V5.01.102 Révision

65a0680f3eac

Les conditions de choc entre les deux systèmes masse-ressort sont simulées par un obstacle de type BI_PLAN_Z (obstacle plan entre deux structures mobiles). La normale au plan de choc est choisie selon l'axe Z, soit NORM OBST = (0. 0. 1.).

Les épaisseurs de matière entourant les nœuds de choc dans la direction considérée sont précisées par les opérandes <code>DIST_1</code> et <code>DIST_2</code>. Dans le cas traité, on choisit <code>DIST_1 = DIST_2 = 0.4495</code> pour qu'à l'instant initial, les deux nœuds de choc soient séparés du jeu J=2 $j=10^{-3}$ mm (cf. [Figure 3.1-b]).

L'intégration temporelle est réalisée avec l'algorithme d'Euler et un pas de temps de $2.5.10^{-4s}$. Les calculs sont archivés tous les 8 pas de temps.

On considère un amortissement réduit $\,\xi\,$ de 7% pour l'ensemble des modes calculés.

3.2 Caractéristiques du maillage

On appelle modele le maillage associé au problème composé d'un système masse-ressort butant contre une paroi fixe et bichoc celui qui est associé au problème 2.

Maillage associé au modèle modele :

nombre de nœuds : 2;

nombre de mailles et types : 1 DIS_T.

Maillage associé au modèle bichoc :

nombre de nœuds : 4;

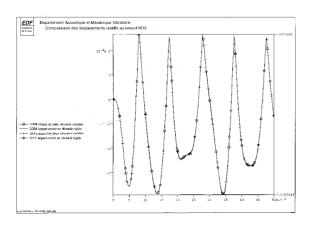
nombre de mailles et types : 2 DIS T.

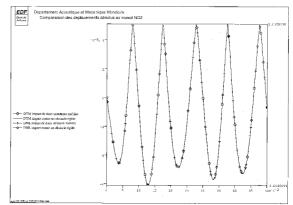
4 Résultats de la modélisation A

4.1 Valeurs testées de la modélisation A

On calcule la fonction diff définie comme étant la différence entre le déplacement absolu du nœud NO2 et celui du nœud no2 . Et on vérifie qu'elle est bien nulle pour différents instants.

Temps (s)	Référence
0,1	0,0
0,3	0,0
0,5	0,0
0,7	0,0
1	0,0


Responsable : DEVESA Georges


65a0680f3eac

On teste également la valeur du déplacement absolu du nœud NO2 pour différents instants.

Temps (s)	Référence (problème 2)
0,05	-3,58082E-04
0,156	-1,22321E-04
0,25	-1,8876E-04
0,4	-1,89772E-04
0,5	-6,84454E-05
0,8	-1,11982E-04
0,9	-1,20103E-04
1	-1,07178E-04

On représente ci dessous l'allure des déplacements relatifs et absolus au nœud NO2:

Déplacements absolus

Déplacements relatifs

Responsable : DEVESA Georges Clé : V5.01.102 Révi

Révision 65a0680f3eac

Date: 27/06/2012 Page: 7/13

5 Modélisation B

5.1 Caractéristiques de la modélisation

Les systèmes masse-ressort sont modélisés, comme dans la modélisation A, par un élément discret à 3 degrés de liberté DIS T.

Modélisation du problème 1 :

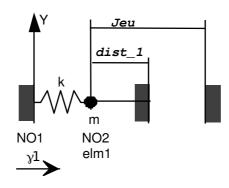


Figure 5.1-a: Modélisation d'un système masse-ressort impactant une paroi rigide

Le nœud NO1 est soumis à une accélération imposée $\gamma_1(t)$. On calcule le déplacement relatif du nœud NO2, son déplacement d'entraînement et son déplacement absolu.

Un élément de type <code>DIST_T</code> sur une maille <code>POI1</code> est retenu pour simuler l'impact de la poutre sur une paroi rigide : les éventuels chocs entre la poutre et l'obstacle sont pris en compte comme étant des forces internes à cet élément. On lui affecte un comportement non linéaire de type choc (raideur) via la loi de comportement <code>DIS CONTACT</code> de la commande <code>DEFI MATERIAU</code>.

L'épaisseur de matière entourant le nœud de choc dans la direction considérée est précisée par l'opérande <code>DIST_1</code> de la commande <code>DEFI_MATERIAU</code>. Dans le cas traité, on choisit <code>DIST_1 = 0.4495</code> et <code>JEU = 0.45</code> pour qu'à l'instant initial, le nœud de choc et l'obstacle soient séparés du jeu $j = 5.10^{-4} mm$ (cf. [Figure 5.1-a]).

Le chargement sismique, dû aux déplacements imposés du nœud NO1, est calculé par l'opérateur CALC_CHAR_SEISME. On crée ensuite un concept charge à partir de l'opérande VECT_ASSE de la commande AFFE CHAR MECA.

On utilise le schéma d'intégration implicite de NEWMARK de $DYNA_NON_LINE$ avec mot-clé $SCHEMA_TEMPS$ (FORMULATION='DEPLACEMENT') avec un pas de temps de $10^{-3}s$ et les paramètres par défaut.

Responsable : DEVESA Georges Clé : V5.01.102 Révision

Révision 65a0680f3eac

Date: 27/06/2012 Page: 8/13

Modélisation du problème 2 :

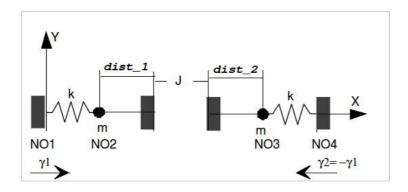


Figure 5.1-b : Modélisation de deux systèmes masse-ressort qui s'entrechoquent

Le nœud NOI est soumis à une accélération imposée $\gamma_1(t)$, le nœud NO4 à $\gamma_2(t) = -\gamma_1(t)$. On calcule les déplacements relatif et absolus des nœuds NO2 et NO3, leur déplacement d'entraînement et leur déplacement absolu.

Les éventuels chocs entre les deux poutres sont pris en compte comme étant des forces internes à un élément à deux nœuds. On affecte à cet élément un comportement non linéaire de type choc (raideur) via le mot clé RIGI_NOR de la loi de comportement DIS_CONTACT de la commande DEFI_MATERIAU. La direction normale de contact est l'axe local x de l'élément discret à deux nœuds.

Les épaisseurs de matière entourant les nœuds de choc dans la direction considérée sont précisées par les opérandes <code>DIST_1</code> et <code>DIST_2</code> de la commande <code>DEFI_MATERIAU</code>. Dans le cas traité, on choisit <code>DIST_1 = DIST_2 = 0.4495</code> pour qu'à l'instant initial, les deux nœuds de choc soient séparés du jeu J=2. $j=10^{-3}m$ (cf. [Figure 5.1-a]).

Le chargement sismique, dû aux déplacements imposés des ancrages (nœud NO1 et NO4, est calculé par l'opérateur <code>CALC_CHAR_SEISME</code>. On crée un concept <code>charge</code> à partir de l'opérande <code>VECT_ASSE</code> de la commande <code>AFFE_CHAR_MECA</code>.

L'intégration temporelle est réalisée avec l'algorithme de Newmark et un pas de temps de $10^{-3} s$. Les calculs sont archivés tous les 8 pas de temps.

On considère un amortissement réduit ξ de 7% pour l'ensemble des modes calculés (mot-clé AMOR MODAL de l'opérateur DYNA NON LINE).

5.2 Caractéristiques du maillage

Le maillage associé au modèle bichoc est constitué de 4 nœuds et de 3 mailles de type DIS T.

Responsable : DEVESA Georges

Date : 27/06/2012 Page : 9/13 Clé : V5.01.102 Révision

65a0680f3eac

6 Résultats de la modélisation B

6.1 Valeurs testées de la modélisation B

On calcule la fonction diff définie comme étant la différence entre le déplacement absolu du nœud NO2 et celui du nœud no2. Et on vérifie qu'elle est bien nulle pour différents instants.

Temps (s)	Référence	
0,1	0,0	
0,2	0,0	
0,3	0,0	
0,4	0,0	
0.5	0.0	

On teste également la valeur maximale de la force d'impact au nœud NO2.

Type d'impact	Référence
contre une paroi rigide	6,29287E+02
entre deux structures mobiles	6,29287E+02

On teste également les valeurs des champs absolus au nœud NO2 et à l'instant t = 0.01.

Champ	Référence	Type	Tolérance
DEPL_ABSOLU	-1,488877E-004	NON_REGRESSION	1,00E-010
VITE_ABSOLU	-1,287591E-002	NON_REGRESSION	1,00E-010
ACCE_ABSOLU	5,877853E-001	NON_REGRESSION	1,00E-010

On teste également la fonctionnalité OBSERVATION . Les champs absolus au nœud NO2 et à l'instant $t\!=\!0.01$ doivent être identiques aux champs précédents :

Champ	Référence	Type	Tolérance
DEPL_ABSOLU	-1,488877E-004	NON_REGRESSION	1,00E-010
VITE_ABSOLU	-1,287591E-002	NON_REGRESSION	1,00E-010
ACCE_ABSOLU	5,877853E-001	NON_REGRESSION	1,00E-010

On teste enfin l'option <code>SUIVI_DDL</code> en comparant visuellement les valeurs obtenues à celles extraites de la table d'observation générée. Ces vérifications portent sur le déplacement et la vitesse (champs <code>DEPL</code> et <code>VITE</code>) au nœud NO2 à l'instant $t\!=\!0.1$. On teste aussi l'option <code>MIN</code> de <code>SUIVI_DDL</code> sur le groupe de mailles <code>RESSORT1</code> au même instant. Cet instant a été choisi de manière à ce que la valeur minimale des champs de déplacement et de vitesse sur ce groupe de maille soit obtenue au nœud NO2.

Pour le déplacement on retrouve donc la valeur : -3.99791E-05m et pour la vitesse la valeur : -1.51040E-02m/s .

Révision Responsable: DEVESA Georges Clé: V5.01.102

65a0680f3eac

Date: 27/06/2012 Page: 10/13

Modélisation C 7

Caractéristiques de la modélisation 7.1

La modélisation C est avant tout un test de DYNA NON LINE avec mot-clé SCHEMA TEMPS (FORMULATION='ACCELERATION'), dont les résultats sont comparés avec DYNA NON LINE avec mot-clé SCHEMA TEMPS (FORMULATION='DEPLACEMENT').

Les systèmes masse-ressort sont modélisés, comme dans la modélisation A, par un élément discret à 3 degrés de liberté DIS T. Seule la modélisation à un degré de liberté est testée.

Modélisation du problème :

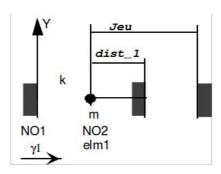


Figure 7.1-a: Modélisation d'un système masse-ressort impactant une paroi rigide

Le nœud NOI est soumis à une accélération imposée $\gamma_1(t)$. On calcule le déplacement relatif du nœud NO2, son déplacement d'entraînement et son déplacement absolu.

Un élément de type DIST T sur une maille POI1 est retenu pour simuler l'impact de la poutre sur une paroi rigide : les éventuels chocs entre la poutre et l'obstacle sont pris en compte comme étant des forces internes à cet élément. On lui affecte un comportement non linéaire de type choc (raideur) via la loi de comportement dis contact de la commande defi materiau.

L'épaisseur de matière entourant le nœud de choc dans la direction considérée est précisée par l'opérande DIST_1 de la commande DEFI_MATERIAU. Dans le cas traité, on choisit DIST 1 = 0.4495 et JEU = 0.45 pour qu'à l'instant initial, le nœud de choc et l'obstacle soient séparés du jeu $j = 5.10^{-4} mm$ (cf. [Figure 5.1-a]).

Le chargement sismique, dû aux déplacements imposés du nœud NOI, est calculé par l'opérateur CALC CHAR SEISME. On crée ensuite un concept charge à partir de l'opérande VECT ASSE de la commande AFFE CHAR MECA.

On utilise le schéma d'intégration de NEWMARK explicite de type DIFFERENCES CENTREES avec un pas de temps de $10^{-3} s$. Le calcul par dyna non line avec mot-clé schema temps (FORMULATION='ACCELERATION') est effectué dans l'espace modal, la non-linéarité étant due au choc et donc demeurant locale.

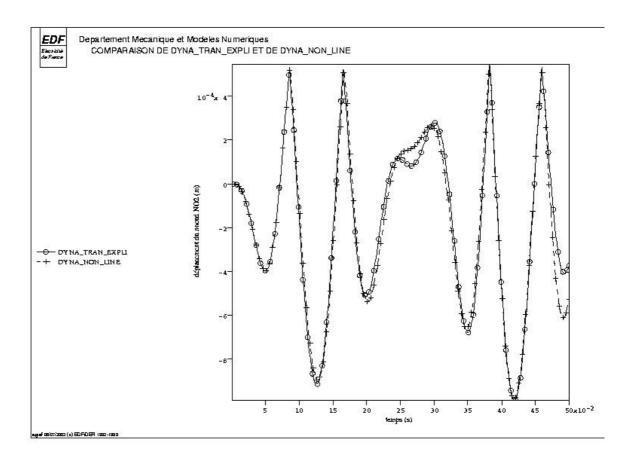
7.2 Caractéristiques du maillage

Le maillage associé au modèle est constitué de 2 nœuds, d'une maille SEG2 de type DIS T et d'une maille ponctuelle POI1 de type DIS T.

Responsable : DEVESA Georges

Date : 27/06/2012 Page : 11/13 Clé : V5.01.102 Révision

Révision 65a0680f3eac


8 Résultats de la modélisation C

8.1 Valeurs testées de la modélisation C

Le calcul est non-linéaire à cause du choc et on ne dispose pas de solution analytique. On teste donc le calcul sur des valeurs de non-régression sur le déplacement selon x du nœud NO2.

Temps (s)	Référence
0,1	-15,6520E-3
0,2	-51,4832E-3
0,3	28,1291E-3
0,4	-44,9343E-3
0,5	-37,7508E-3

On compare les déplacements absolus issus de DYNA_NON_LINE avec mot-clé SCHEMA_TEMPS (FORMULATION='ACCELERATION') avec ceux donnés par DYNA_NON_LINE avec mot-clé SCHEMA TEMPS (FORMULATION='DEPLACEMENT').

Clé: V5.01.102 Révision Responsable: DEVESA Georges

65a0680f3eac

Date: 27/06/2012 Page: 12/13

Modélisation D 9

Caractéristiques de la modélisation 9.1

La modélisation D est une variante de la modélisation C où l'on va remplacer le schéma en temps non dissipatif des différences centrées par le schéma explicite dissipatif de TCHAMWA (avec le paramètre PHI = 1.05). A la différence de la modélisation C, on résout ici sur base physique et non sur base modale (le mot-clé PROJ MODAL de DYNA NON LINE n'est donc plus présent dans la modélisation D).

Résultats de la modélisation D 10

Valeurs testées de la modélisation D

Le calcul est non-linéaire à cause du choc et on ne dispose pas de solution analytique. Comparées à la modélisation C les valeurs obtenues sont différentes car le schéma en temps introduit une dissipation numérique. On teste le calcul sur des valeurs de non-régression sur le déplacement selon x du nœud NO2.

Temps (s)	Référence	Tolérance
0,1	-15,6911E-3	0,10%
0,2	-49,4505E-3	0,10%
0,3	30,2638E-3	0,10%
0,4	-38,0509E-3	0,10%
0,5	-39,2295E-3	0,10%

Le fait de changer de schéma en temps et d'introduire une dissipation supplémentaire, modifie certaines des valeurs instantanées testées de l'ordre de 10 %.

Responsable : DEVESA Georges

Date : 27/06/2012 Page : 13/13 Clé : V5.01.102 Révision

Révision 65a0680f3eac

11 Synthèse des résultats

Les résultats obtenus avec *Code_Aster* sont conformes à ceux attendus (erreur inférieure au millième). Sur cet exemple, le calcul non linéaire direct est beaucoup plus coûteux en temps de calcul, d'un facteur 20, que celui sur base modale.

La modélisation C montre que l'on obtient bien des résultats semblables avec une méthode d'intégration temporelle explicite avec mot-clé SCHEMA_TEMPS (FORMULATION='ACCELERATION')) et implicite (DYNA NON LINE avec mot-clé SCHEMA TEMPS (FORMULATION='ACCELERATION')).

La modélisation D prouve que l'on obtient aussi des résultats proches avec une méthode d'intégration temporelle explicite dissipative de TCHAMWA (l'écart étant dû à cet amortissement numérique ajouté).