Titre: SSLV301 - Poutre cylindrique console sous charge I[...]

Responsable : DE SOZA Thomas

Date : 28/12/2011 Page : 1/5 Clé : V3.04.301 Révision

927c0dcea416

SSLV301 - Poutre cylindrique console sous charge linéairement répartie

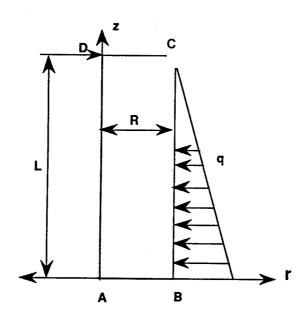
Résumé:

Le but du test est de valider une charge linéairement répartie, à partir d'une analyse 2D avec décomposition en série de Fourier de la charge.

On réalise ici 2 calculs :

- 1) un calcul avec les 2 premiers modes (0 et 1),
- 2) un calcul avec les 10 premiers modes.

Titre: SSLV301 - Poutre cylindrique console sous charge [...]


Responsable : DE SOZA Thomas

Date : 28/12/2011 Page : 2/5 Clé : V3.04.301 Révision

927c0dcea416

1 Problème de référence

1.1 Géométrie

Longueur

 $L = 0.240 \, m$

Rayon

 $R = 0.006 \, m$

1.2 Propriétés de matériaux

$$E = 2.1 \times 10^{11} N/m^2$$

v=0.3

1.3 Conditions aux limites et chargements

- Arête AB encastrée
- Charge variant linéairement en fonction de z sur la génératrice BC, valant :

$$q=0$$
 en C et $q=-3000 N/m$ en B

1.4 Conditions initiales

Sans objet pour l'analyse statique.

Titre: SSLV301 - Poutre cylindrique console sous charge [...]

Responsable : DE SOZA Thomas Clé : V3.04.301

Date : 28/12/2011 Page : 3/5 Clé : V3.04.301 Révision

927c0dcea416

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence est obtenue analytiquement [bib1].

2.2 Résultats de référence

- 1) Déplacement radial du point $C: u_{rc} = -1.552 \times 10^{-3} m$
- 2) Contraintes d'encastrement au point $B:\sigma_{zz}(B)=169.8\times10^6 Pa$

2.3 Incertitude sur la solution

Solution analytique.

2.4 Référence bibliographique

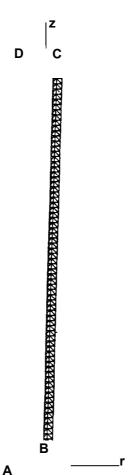
1) S. TIMOSHENKO : Résistance des matériaux, 1ère partie. Librairie Polytechnique Ch. Béranger, Paris, 1947

Titre: SSLV301 - Poutre cylindrique console sous charge I[...]

Responsable : DE SOZA Thomas

Date : 28/12/2011 Page : 4/5 Clé : V3.04.301 Révision

927c0dcea416


3 Modélisation A

3.1 Caractéristiques de la modélisation

AXIS FOURIER, maille T6

Découpage: 80 éléments suivant la longueur

2 éléments dans l'épaisseur

3.2 Caractéristiques du maillage

Nombre de nœuds : 805

Nombre de mailles et types : 320 TRIA6

3.3 Valeurs testées

Valeurs fournies pour $\theta = 0$.

Localisation	Type de valeur	Référence	Aster	% différence
Calcul 1 (2 modes)				
Point C	$u_r(m)$	-1.552×10^{-3}	-1.54839×10^{-3}	-0.232
Point B	$\sigma_{zz}(Pa)$	169.8×10^6	168.73×10^6	-0.63

Titre : SSLV301 - Poutre cylindrique console sous charge I[...]

Date : 28/12/2011 Page : 5/5
Responsable : DE SOZA Thomas

Clé : V3.04.301 Révision

927c0dcea416

Calcul 2 (10 modes) Point C $u_r(m)$ -1.552×10^{-3} -1.54839×10^{-3} -0.232 Point B $\sigma_{zz}(Pa)$ 169.8×10^6 168.59×10^6 -0.71

3.4 Remarque

Les valeurs de la flèche de la poutre et de la contrainte d'encastrement sont obtenues avec précision avec les deux premiers modes seulement.

4 Synthèse des résultats

Les résultats issus du calcul sont en bon accord avec la solution analytique.