Date: 15/09/2011 Page: 1/6 Responsable: KUDAWOO Ayaovi-Dzifa Clé: V3.03.504

Révision

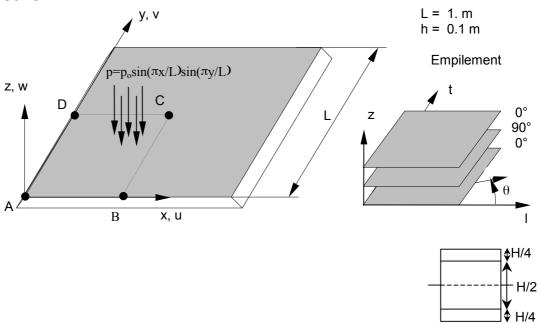
b6a98b8a3c54

SSLS504 - Plaque carrée composite constituée de 3 couches, soumise à un chargement doublement sinusoïdale

Résumé:

Ce test représente le calcul quasi-statique d'une plaque carrée composite constituée de 3 couches, simplement supportée, soumise à un chargement doublement sinusoïdal. Ce cas-test permet de valider la modélisation éléments finis DST avec les mailles TRIA3 et QUAD4, avec un matériau composite multi-couches.

Les déplacements et les contraintes obtenus sont comparés à une solution de référence numérique.


Responsable : KUDAWOO Ayaovi-Dzifa

Date : 15/09/2011 Page : 2/6 Clé : V3.03.504 Révision

b6a98b8a3c54

1 Problème de référence

1.1 Géométrie

Les 3 couches ont pour épaisseur relative : H/4, H/2, H/4

1.2 Propriétés du matériau

Les axes d'orthotropie correspondent aux directions curvilignes x et y .

$$E_l = 25.$$
 $E_t = 1.$ $(l \Leftrightarrow x ; t \Leftrightarrow y)$
 $G_{lt} = G_{lz} = 0.5$ $G_{tz} = 0.2$

1.3 Conditions aux limites et chargements

- Conditions aux limites : le déplacement perpendiculaire à la plaque, sur son contour est nul.
- Chargement: $p = p_o \sin(\pi x/L) \sin(\pi y/L)$ avec $p_o = 0.01$

1.4 Conditions initiales

Sans objet

Responsable: KUDAWOO Ayaovi-Dzifa

Date: 15/09/2011 Page: 3/6 Clé: V3.03.504 Révision

b6a98b8a3c54

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence est une solution numérique [3].

2.2 Résultats de référence

Les résultats de référence numériques sont les suivants :

	Grandeur	DST*	DST*
	Grandedi	(TRIA3)	(QUAD4)
•	Déplacement w au point C $(L/2, L/2, 0)$	-0.07323	-0.07417
•	Contrainte σ_{xx} au point C $(L/2, L/2, h/2)$ (couche 3)	-0.478	-0.482
•	Contrainte σ_{yy} au point C $(L/2, L/2, h/4)$ (couche 2)	-0.339	-0.4
•	Contrainte $ au_{xz}$ au point D $(0,L/2,0)$ (couche 2)	-0.0203	-0.0305
•	Contrainte $ au_{yz}$ au point B $(L/2,0,0)$ (couche 2)	-0.0406	-0.0204

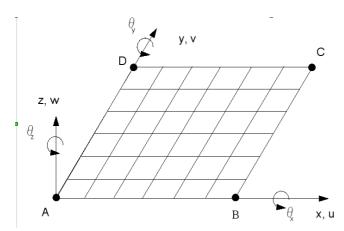
^{*} les solutions de référence ont été obtenues avec un maillage 6×6 [3].

2.3 Incertitudes sur la solution

Inférieure à 2%

2.4 Références bibliographiques

- 1) BATOZ J.L., DHATT G. : Modélisation des structures par éléments finis , Vol 2, Poutres et Plaques, HERMES.
- 2) PAGANO N.J., Hatfield J.J.: "Elastic behaviour of multilayered bidirectional composites", AIAA J., Vol 10, N°7, p. 931-933, 1972..
- 3) LARDEUR P. : Développement et évaluation de deux nouveaux éléments finis de plaques et de coques composites avec influence du cisaillement transversal, Thèse de Doctorat Ingénieur, Université de Technologie de Compiègne, 1990.


Responsable: KUDAWOO Ayaovi-Dzifa

Date : 15/09/2011 Page : 4/6 Clé : V3.03.504 Révision

b6a98b8a3c54

3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation DST (QUAD4)

Conditions aux limites :

Côté AB : $w = \theta_y = 0$ Côté AD : $w = \theta_y = 0$

Conditions de symétrie :

Côté BC : $u=\theta_y=0$ Côté CD : $v=\theta_z=0$

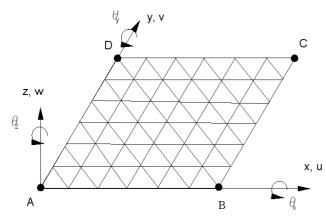
3.2 Caractéristiques du maillage

Nombre de nœuds : 49

Nombre de mailles et type : 36 QUAD4

3.3 Grandeurs testées et résultats

Identific	ation	Type de Référence	Valeur de Référence	Tolérance
Déplacement w au point	C $(L/2, L/2, 0)$	'SOURCE_EXTERNE'	-0.07417	0.4%
Contrainte σ_{xx} $(L/2, L/2, h/2)$	au point <i>C</i>	'SOURCE_EXTERNE'	-0.482	2%
Contrainte σ_{yy} $(L/2, L/2, h/4)$	au point <i>C</i>	'SOURCE_EXTERNE'	-0.400	4%
Contrainte τ_{xz} au point	D = (0, L/2, 0)	'SOURCE_EXTERNE'	-0.0305	2%
Contrainte τ_{yz} au point	B = (L/2,0,0)	'SOURCE_EXTERNE'	-0.0204	3%


Responsable : KUDAWOO Ayaovi-Dzifa

Date : 15/09/2011 Page : 5/6 Clé : V3.03.504 Révision

Révision b6a98b8a3c54

4 Modélisation B

4.1 Caractéristiques de la modélisation

Modélisation DST (TRIA3)

Conditions aux limites :

Côté AB : $w = \theta_y = 0$ Côté AD : $w = \theta_y = 0$

Conditions de symétrie :

Côté BC : $u = \theta_y = 0$ $x_{x, y}$ Côté CD : $v = \theta_y = 0$

4.2 Caractéristiques du maillage

Nombre de nœuds : 49

Nombre de mailles et type : 72 TRIA3

4.3 Grandeurs testées et résultats

Identification	Type de Référence	Valeur de Référence	Tolérance
Déplacement w au point C $(L/2, L/2, 0)$	'SOURCE_EXTERNE'	-0.07323	3%
Contrainte σ_{xx} au point C $(L/2, L/2, h/2)$	'SOURCE_EXTERNE'	-0.478	4%
Contrainte σ_{yy} au point C $(L/2, L/2, h/4)$	'SOURCE_EXTERNE'	-0.339	6.5%
Contrainte τ_{xz} au point D $(0,L/2,0)$	'SOURCE_EXTERNE'	-0.0203	12%
Contrainte τ_{yz} au point B $(L/2,0,0)$	'SOURCE_EXTERNE'	-0.0406	12%

Responsable : KUDAWOO Ayaovi-Dzifa

Date: 15/09/2011 Page: 6/6 Clé: V3.03.504 Révision

Révision b6a98b8a3c54

5 Synthèse des résultats

- **Déplacements** : le résultat obtenu avec les mailles QUAD4 est satisfaisant (écart de 0.4%). On observe un écart plus important (3%) pour les mailles TRIA3.
- Contraintes : le résultat obtenu avec les mailles QUAD4 est satisfaisant (écart maximum de 3%). On observe un écart plus important (7%) pour les mailles TRIA3.

Ce test permet donc de valider le calcul des plaques composites sous chargement fonction de la géométrie, aussi bien en terme de déplacements que de contraintes.