Responsable: KUDAWOO Ayaovi-Dzifa

Date: 14/12/2017 Page: 1/21 Clé: V3.03.108 Révision

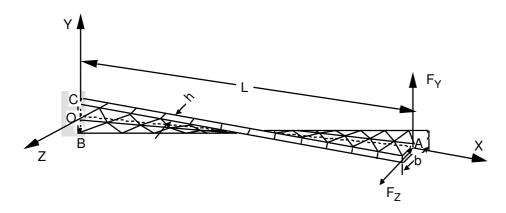
39eaf7272b4a

SSLS108 - Coque hélicoïdale sous charges concentrées

Résumé:

Ce test en élasticité linéaire est très sévère de par sa géométrie (coque gauche). Il permet de montrer l'influence du gauchissement sur les performances des éléments de coques. Il comporte 14 modélisations permettant de tester les éléments COQUE_3D, SHB, DKT, DST et Q4G pour différents supports géométriques.

Les valeurs de référence sont des résultats de calcul fournis dans la littérature, on vérifie le déplacement en un point de la structure.


Responsable: KUDAWOO Ayaovi-Dzifa

Date: 14/12/2017 Page: 2/21 Révision Clé: V3.03.108

39eaf7272b4a

Problème de référence

1.1 Géométrie

La coque est d'épaisseur 0.32 m, de longueur 12 m et de largeur 1.1 m.

Propriétés de matériaux 1.2

$$E = 29.10^6 Pa$$

y=0.22

1.3 Conditions aux limites et chargements

Encastrée sur le côté OBC : u=v=w=0 , $\theta_x=\theta_y=\theta_z=0$

Deux cas de charge qui correspondent à des charges concentrées au point A:

•Force parallèle à l'axe Z : $F_z = 1 N$

•Force parallèle à l'axe $Y: F_v = 1 N$

Responsable : KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 3/21 Clé : V3.03.108 Révision

39eaf7272b4a

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

La solution de référence [1] est une solution fondée sur la théorie des poutres (non-déformation de la section transversale), incluant ou non les effets du cisaillement transverse.

2.2 Résultats de référence

Déplacement du point A suivant Y. Déplacement du point A suivant Z.

Chargement (N)	Référence (m)
$F_{y}=0$ $F_{z}=1$	$DY = 1.72 \times 10^{-3}$ $DZ = 5.424 \times 10^{-3}$
$F_{y}=1$ $F_{z}=0$	$DY = 1.754 \times 10^{-3}$ $DZ = 1.72 \times 10^{-3}$

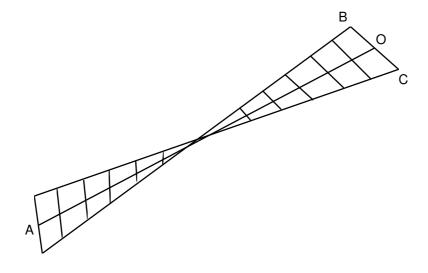
2.3 Incertitudes sur la solution

Solution semi-analytique.

2.4 Références bibliographiques

- [1] J. L. Batoz and G. Dhatt, « Modélisation des structures par éléments finis Volume.3: Coques », éditions HERMES. Paris , Françe, 1992.
- [2] HAMMADI Fodil : 'Formulation et évaluation d'éléments finis a continuité C° de la géométrie pour l'analyse linéaire et non-linéaire des coques' Thèse de docteur, UTC, juin 1998

Responsable : KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 4/21 Clé : V3.03.108 Révision

39eaf7272b4a

3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation COQUE 3D

Découpage :

2 selon la largeur, 12 selon la longueur 24 mailles QUAD9, épaisseur : $h\!=\!0.32$

Noms des nœuds :

Point	O	<i>N06</i>
Point	B	<i>N01</i>
Point	C	<i>N02</i>
Point	A	N032

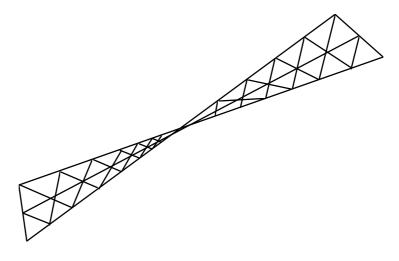
3.2 Caractéristiques du maillage

Nombre de nœuds : 125

Nombre de mailles et types : 24 QUAD9

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A	déplacement V (m)	-1.72 10 ⁻³
		déplacement W (m)	5.42 10 ⁻³
$F_y = 1 N$	A	déplacement V (m)	1.75 10 ⁻³
		déplacement W (m)	−1.72 10 ^{−3}

Responsable: KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 5/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

4 Modélisation B

4.1 Caractéristiques de la modélisation

Modélisation COQUE 3D

Découpage :

2 selon la largeur, 12 selon la longueur 48 mailles TRIA7, épaisseur : $h\!=\!0.32$

Noms des nœuds :

Point O	N06
Point B	N01
Point C	N02
Point A	N032

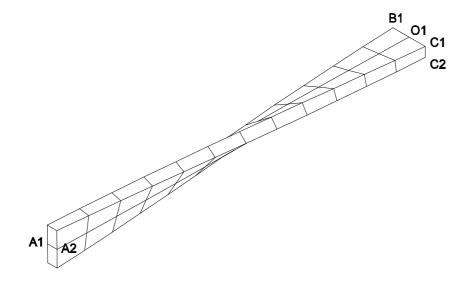
4.2 Caractéristiques du maillage

Nombre de nœuds : 173

Nombre de mailles et types : 48 TRIA7

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A	déplacement V (m)	-1.72 10 ⁻³
		déplacement W (m)	5.42 10 ^{- 3}
$F_y = 1 N$	A	déplacement V (m)	1.75 10 ⁻³
		déplacement W (m)	-1.72 10 ⁻³

Responsable : KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 6/21 Clé : V3.03.108 Révision

39eaf7272b4a

5 Modélisation C

5.1 Caractéristiques de la modélisation

Modélisation SHB8

Découpage :

2 selon la largeur, 12 selon la longueur 24 mailles HEXA8, épaisseur : h = 0.32

Noms des nœuds :

Point O1 N03 Point O2 N05Point B1 N04 Point B2 N06Point C1 N01 Point C2 N02Point A1 N78 Point A2 N75

5.2 Caractéristiques du maillage

Nombre de nœuds : 78

Nombre de mailles et types : 24 HEXA8

5.3 Valeurs testées

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A1 et $A2$	déplacement V (m)	−1.72 10 ^{−3}
		déplacement W (m)	5.42 10 ⁻³
$F_v = 1 N$	A1 et A2	déplacement V (m)	1.75 10 ⁻³
,		déplacement W (m)	-1.72 10 ⁻³

5.4 Remarques

Une modélisation 3D sur le même maillage (mailles HEXA8) fait apparaître un blocage : les résultats sont très éloignés de la référence. Par exemple, pour le cas de charge 1, on obtient :

Responsable: KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 7/21 Clé : V3.03.108 Révision

39eaf7272b4a

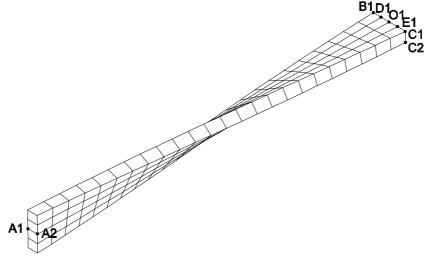
Point	Grandeur en unité	Référence	Aster
A1 et A2	déplacement V (m)	−1.72 10 ^{−3}	-7.5 10 ⁻⁴
	déplacement W (m)	5.42 10 ⁻³	5.408 10 ⁻³

Ce blocage n'apparaît plus avec des mailles quadratiques HEXA20, puisque l'on obtient alors :

Point	Grandeur en unité	Référence	Aster
<i>A1</i> et <i>A2</i>	déplacement V (m)	−1.72 10 ^{−3}	-1.729 10 ⁻³
	déplacement W (m)	5.42 10 ⁻³	5.43 10 ⁻³

La modélisation SHB permet d'éviter tout blocage numérique, à un coût (en temps CPU) similaire à celui d'un maillage HEXA8.

Responsable : KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 8/21 Clé : V3.03.108 Révision

39eaf7272b4a

6 Modélisation D

6.1 Caractéristiques de la modélisation

Modélisation SHB8

Découpage :

4 selon la largeur, 24 selon la longueur 96 mailles HEXA8, épaisseur : h=0.32

Noms des nœuds :

Point O1	N245	Point O2	N249
Point B1	N224	Point B2	N226
Point C1	N239	Point C2	N241
Point $D1$	N236	Point $D2$	N238
Point E1	N250	Point E2	<i>N246</i>
Point A1	N05	Point A2	N06

6.2 Caractéristiques du maillage

Nombre de nœuds : 250

Nombre de mailles et types: 96 HEXA8

6.3 Valeurs testées

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A1 et $A2$	déplacement V (m)	−1.72 10 ^{−3}
		déplacement W (m)	5.42 10 ⁻³
$F_y = 1 N$	A1 et A2	déplacement V (m)	1.75 10 ⁻³
		déplacement W (m)	–1.72 10 ^{–3}

6.4 Remarques

Responsable: KUDAWOO Ayaovi-Dzifa

Date: 14/12/2017 Page: 9/21 Clé: V3.03.108

Révision

39eaf7272b4a

Une modélisation 3D sur le même maillage (mailles HEXA8) fait apparaître un blocage : même avec un maillage à 96 éléments. Les résultats restent très éloignés de la référence. Par exemple, pour le cas de charge 1, on obtient :

Point	Grandeur en unité	Référence	Aster
A1 et A2	déplacement V (m)	−1.72 10 ^{−3}	-2.49 10 ⁻⁴
	déplacement W (m)	5.42 10 ⁻³	1.12 10 ⁻³

Ce blocage n'apparaît plus avec des mailles quadratiques HEXA20, puisque l'on obtient alors :

Point	Grandeur en unité	Référence	Aster	
<i>A1</i> et <i>A2</i>	déplacement V (m)	−1.72 10 ^{−3}	-1.735 10 ⁻³	_
	déplacement W (m)	5.42 10 ⁻³	5.438 10 ⁻³	

Avec des HEXA20, la convergence est bien meilleure. La modélisation SHB permet d'éviter tout blocage numérique, à un coût (en temps CPU) similaire à celui d'un maillage HEXA8.

Responsable : KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 10/21 Clé : V3.03.108 Révision

39eaf7272b4a

7 Modélisation E

7.1 Caractéristiques de la modélisation

Modélisation SHB6

Découpage :

4 selon la largeur, 24 selon la longueur 192 mailles PENTA6, épaisseur : h=0.32

7.2 Caractéristiques du maillage

Nombre de nœuds : 250

Nombre de mailles et types : 192 PENTA6

7.3 Valeurs testées

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A1 et A2	déplacement V (m)	-1.72 10 ⁻³
	AL	déplacement W (m)	5.42 10 ⁻³
$F_y = 1 N$	AI et	déplacement V (m)	1.75 10 ⁻³
	A2	déplacement W (m)	-1.72 10 ⁻³

7.4 Remarques

Une modélisation 3D sur le même maillage (mailles PENTA6) fait apparaître un blocage : les résultats sont très éloignés de la référence. Par exemple, pour le cas de charge 1, on obtient :

Point	Grandeur en unité	Référence	Aster
A1 et $A2$	déplacement V (m)	−1.72 10 ^{−3}	−7.84 10 ^{−4}

Responsable: KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 11/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

déplacement W (m)

 $5.42\ 10^{-3}$

2.63 10⁻³

Ce blocage n'apparaît plus avec des mailles quadratiques PENTA15, puisque l'on obtient alors :

Point	Grandeur en unité	Référence	Aster	
A1 et A2	déplacement V (m)	−1.72 10 ^{−3}	-1.72 10 ⁻³	
	déplacement W (m)	5.42 10 ⁻³	5.43 10 ⁻³	

La modélisation SHB6 permet d'éviter tout blocage numérique, à un coût (en temps CPU) similaire à celui d'un maillage PENTA6.

Responsable: KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 12/21 Clé : V3.03.108 Révision

39eaf7272b4a

8 Modélisation F

8.1 Caractéristiques de la modélisation

Modélisation SHB6

Découpage :

8 selon la largeur, 48 selon la longueur 768 mailles PENTA6, épaisseur : h=0.32

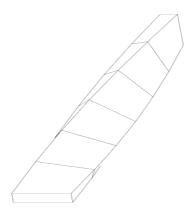
8.2 Caractéristiques du maillage

Nombre de nœuds : 882

Nombre de mailles et types : 768 PENTA6

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A1 et A2	déplacement V (m)	−1.72 10 ^{−3}
		déplacement W (m)	5.42 10 ⁻³
$F_y = 1 N$	A1 et A2	déplacement V (m)	1.75 10 ⁻³
		déplacement W (m)	−1.72 10 ^{−3}

Responsable : KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 13/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

9 Modélisation G

9.1 Caractéristiques de la modélisation

Modélisation SHB20

Découpage :

1 selon la largeur, 6 selon la longueur 6 mailles HEXA20, épaisseur : h=0.32

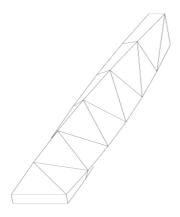
9.2 Caractéristiques du maillage

Nombre de nœuds: 80

Nombre de mailles et types : 6 HEXA20

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A1 et A2	déplacement V (m)	-1.72 10 ⁻³
		déplacement W (m)	5.42 10 ⁻³
$F_{v}=1 N$	A1 et A2	déplacement V (m)	1.75 10 ⁻³
•		déplacement W (m)	−1.72 10 ^{−3}

Responsable: KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 14/21 Clé : V3.03.108 Révision

39eaf7272b4a

10 Modélisation H

10.1 Caractéristiques de la modélisation

Modélisation SHB15

Découpage :

1 selon la largeur, 6 selon la longueur 12 mailles PENTA15, épaisseur : h=0.32

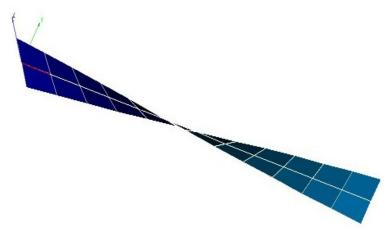
10.2 Caractéristiques du maillage

Nombre de nœuds: 92

Nombre de mailles et types : 12 PENTA15

Cas de charges	Point	Grandeur en unité	Référence
$F_z = 1 N$	A1 et A2	déplacement V (m)	-1.72 10 ⁻³
		déplacement W (m)	5.42 10 ⁻³
$F_v = 1 N$	A1 et A2	déplacement V (m)	1.75 10 ⁻³
-		déplacement W (m)	–1.72 10 ^{–3}

Responsable : KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 15/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

11 Modélisation I

11.1 Caractéristiques de la modélisation

On utilise une modélisation <code>DKT</code> (<code>QUAD4</code>). On teste dans cette modélisation <code>COEF_RIGI_DRZ</code> négatif. Dans ce cas, le ddl <code>DRZ</code> a un sens physique de « <code>drilling rotation</code> » ou rotation autour de la normale.

11.2 Caractéristiques du maillage

Le maillage contient 39 nœuds et 24 mailles QUAD4.

11.3 Grandeurs testées et résultats

Chargement	lde	ntification	Type de référence	Valeur de référence	Tolérance
(N)	Point	Grandeur		(m)	(%)
$F_{Y}=1$ $F_{Z}=0$	A	DY	'SOURCE_EXTERNE'	$DY = 1.754 \times 10^{-3}$	48.0
$F_{y}=0$ $F_{z}=1$		DZ	'SOURCE_EXTERNE'	$DZ = 5.424 \times 10^{-3}$	62.5

11.4 Remarques

Sous l'effet des grands déplacements subis par la structure, les mailles QUAD4 deviennent de plus en plus gauches au cours du calcul. Les hypothèses de la modélisation DKT ne sont alors plus respectées.

Responsable: KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 16/21 Clé : V3.03.108 Révision

39eaf7272b4a

12 Modélisation J

12.1 Caractéristiques de la modélisation

On utilise une modélisation DKT (TRIA3).

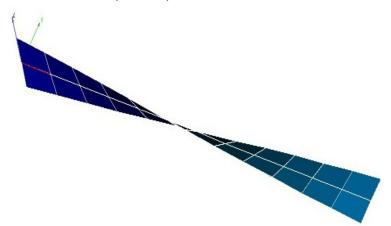
12.2 Caractéristiques du maillage

Le maillage contient 39 nœuds et 48 mailles TRIA3.

12.3 Grandeurs testées et résultats

Chargement	nt Identification		Tymo do váfárance	Valeur de référence	Tolérance
(N)	Point	Grandeur	Type de référence	(m)	(%)
$F_{Y}=1$ $F_{Z}=0$	4	DY	'SOURCE_EXTERNE'	$DY = 1.754 \times 10^{-3}$	17.0
$F_{Y}=0$ $F_{Z}=1$	A	DZ	'SOURCE_EXTERNE'	$DZ = 5.424 \times 10^{-3}$	2.5

Responsable: KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 17/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

13 Modélisation K

13.1 Caractéristiques de la modélisation

On utilise une modélisation DST (QUAD4).

13.2 Caractéristiques du maillage

Le maillage contient 39 nœuds et 24 mailles QUAD4.

13.3 Grandeurs testées et résultats

Chargement	lde	ntification	Type de référence	Valeur de référence	Tolérance
(N)	Point	Grandeur		(m)	(%)
$F_{Y}=1$ $F_{Z}=0$	A	DY	'SOURCE_EXTERNE'	$DY = 1.754 \times 10^{-3}$	48.0
$F_{y}=0$ $F_{z}=1$		DZ	'SOURCE_EXTERNE'	$DZ = 5.424 \times 10^{-3}$	62.5

13.4 Remarques

Sous l'effet des grands déplacements subis par la structure, les mailles QUAD4 deviennent de plus en plus gauches au cours du calcul. Les hypothèses de la modélisation DKT ne sont alors plus respectées.

Responsable: KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 18/21 Clé : V3.03.108 Révision

39eaf7272b4a

14 Modélisation L

14.1 Caractéristiques de la modélisation

On utilise une modélisation DST (TRIA3).

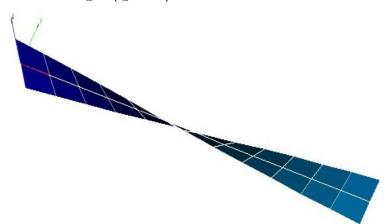
14.2 Caractéristiques du maillage

Le maillage contient 39 nœuds et 48 mailles TRIA3.

14.3 Grandeurs testées et résultats

Chargement	Identification		Typo do référence	Valeur de référence	Tolérance
(N)	Point	Grandeur	Type de référence	(m)	(%)
$F_{Y}=1$ $F_{Z}=0$	4	DY	'SOURCE_EXTERNE'	$DY = 1.754 \times 10^{-3}$	15.0
$F_{Y}=0$ $F_{Z}=1$	A	DZ	'SOURCE_EXTERNE'	$DZ = 5.424 \times 10^{-3}$	1.5

Responsable: KUDAWOO Ayaovi-Dzifa


Date : 14/12/2017 Page : 19/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

15 Modélisation M

15.1 Caractéristiques de la modélisation

On utilise une modélisation Q4G (QUAD4).

15.2 Caractéristiques du maillage

Le maillage contient 39 nœuds et 24 mailles QUAD4.

15.3 Grandeurs testées et résultats

Chargement	Identification		Typo do rófóronos	Valeur de référence	Tolérance
(N)	Point	Grandeur	Type de référence	(m)	(%)
$F_{Y}=1$ $F_{Z}=0$	· A	DY	'SOURCE_EXTERNE'	$DY = 1.754 \times 10^{-3}$	48.0
$F_{Y}=0$ $F_{Z}=1$		DZ	'SOURCE_EXTERNE'	$DZ = 5.424 \times 10^{-3}$	62.5

15.4 Remarques

Sous l'effet des grands déplacements subis par la structure, les mailles QUAD4 deviennent de plus en plus gauches au cours du calcul. Les hypothèses de la modélisation DKT ne sont alors plus respectées.

Responsable: KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 20/21 Clé : V3.03.108 Révision

39eaf7272b4a

16 Modélisation N

16.1 Caractéristiques de la modélisation

On utilise une modélisation Q4G (TRIA3).

16.2 Caractéristiques du maillage

Le maillage contient 39 nœuds et 48 mailles TRIA3.

16.3 Grandeurs testées et résultats

Chargement	Identification		Tymo do váfárance	Valeur de référence	Tolérance
(N)	Point	Grandeur	Type de référence	(m)	(%)
$F_{Y}=1$ $F_{Z}=0$	4	DY	'SOURCE_EXTERNE'	$DY = 1.754 \times 10^{-3}$	11.0
$F_{Y}=0$ $F_{Z}=1$	A	DZ	'SOURCE_EXTERNE'	$DZ = 5.424 \times 10^{-3}$	6.0

Responsable : KUDAWOO Ayaovi-Dzifa

Date : 14/12/2017 Page : 21/21 Clé : V3.03.108 Révision

Révision 39eaf7272b4a

17 Synthèse des résultats

Ce test est très sévère de par la géométrie de la coque qui est gauche.

Les éléments COQUE_3D donnent de très bons résultats (inférieurs à 0.5%) avec peu de nœuds (modélisation A et B).

Pour les modélisations SHB, les éléments SHB8 donnent la même précision avec un peu plus de nœuds (modélisation D). Ils restent très bons pour un maillage plus grossier (modélisation C).

Par contre, les éléments SHB6 nécessitent un maillage beaucoup plus fin pour converger (modélisation F). Sur un maillage plus grossier (modélisation E), les résultats sont médiocres. Néanmoins ces éléments sont très utiles pour pouvoir mailler une géométrie quelconque avec des SHB linéaires.

Les éléments quadratiques SHB20 et SHB15 donnent de bons résultats avec peu de nœuds.

S'agissant des modélisations de type plaque (DKT, DST, Q4G), on observe que le type de maille utilisé a une forte influence sur les résultats :

- les mailles TRIA3 donnent de bons résultats (environ 10 % d'erreur), un maillage plus fin améliore de plus sensiblement ces derniers ;
- les mailles QUAD4 donnent en revanche des résultats très éloignés de la solution de référence. La formulation des éléments de plaque fait en effet l'hypothèse de facettes planes, celle-ci n'est plus vérifiée sur ce test en présence de grands déplacements.