Responsable : GÉNIAUT Samuel Clé : V3.02.114 Révision

dc6a313d7f52

Date: 01/12/2017 Page: 1/22

SSLP114 - Fissure plane semi-infinie

Résumé

Ce test permet de valider le calcul d'un champ asymptotique par la méthode XFEM. Il s'agit de vérifier si la modélisation XFEM représente fidèlement la solution analytique, de la mécanique de la rupture. Ce champ analytique est la solution exacte pour le problème d'ouverture en mode I d'une fissure plane.

Le domaine est une plaque carrée, coupée jusqu'au milieu par une fissure horizontale. Un chargement est imposé sur les 4 bords pour assurer une ouverture rigoureusement en mode $\it I$, conforme à la solution analytique. On applique des conditions limites de type « déplacement » sur les bords non fissurés, et de type « force » sur le bord coupé par la fissure.

Pour valider cette démarche, on envisage 3 modélisations:

- Modélisation A: on effectue un calcul simple à partir d'éléments linéaires (TRIA3) pour une fissure horizontale
- Modélisation B: on effectue un calcul simple à partir d'éléments quadratiques (TRIA6) pour une fissure horizontale
- Modélisation C: on incline la fissure pour changer le référentiel des formules analytiques. Pour conserver l'ouverture en mode I, on incline les champs (contrainte et déplacement) imposés sur les bords. D'une part, on évalue l'incidence de la forme du domaine sur les résultats, puisque en théorie, les équations asymptotiques ne dépendent pas de la géométrie du domaine dans le référentiel de la fissure. D'autre part, on évalue la robustesse du calcul avec la dégradation du conditionnement.
- Modélisation D: on effectue un calcul simple à partir d'éléments linéaires (TRIA3) pour une fissure horizontale, en contraintes planes
- Modélisation E: on effectue un calcul simple à partir d'éléments quadratiques (TRIA6) pour une fissure horizontale, en contraintes planes

On teste les facteurs d'intensité de contrainte KI, KII. Pour le mode I, on devra retrouver KII = 0 et $KI \neq 0$, KI correspondant au coefficient de proportionnalité imposé aux champs solution (voir paragraphe [4]).

De même, on vérifie aussi l'exactitude du calcul du champ de déplacement calculé sur le domaine, par rapport à la solution analytique.

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 2/22 Clé : V3.02.114 Révision

dc6a313d7f52

Responsable : GÉNIAUT Samuel Clé : V3.02.114 Révision

dc6a313d7f52

Date: 01/12/2017 Page: 3/22

1 Problème de référence

1.1 Géométrie

Modélisation A:

La structure 2D est une plaque carrée unitaire (LX=1, LY=1), comportant une fissure « débouchante » sur une demi-longueur [Figure 1.1-1]. La fissure est droite, horizontale et de longueur a=0.5. On oriente arbitrairement la fissure du bord droit vers le centre.

Les bords du domaines sont notés en sens trigonométrique :

- LIG1 désigne le bord inférieur.
- LIG2 désigne le bord droit.
- LIG3 désigne le bord supérieur.
- LIG4 désigne le bord gauche.

Les 4 bords du domaine servent à imposer les conditions limites. Sur les bords non coupés par la fissure (LIG1, LIG2, LIG3) on impose des conditions limites de Dirichlet, à l'aide de la solution analytique en déplacement (voir paragraphe [4]).

Notons que le bord droit (LIG4) coupé par la fissure, engendre une singularité à l'intersection. On observe un saut de déplacement correspondant à l'ouverture de la fissure [Figure 2.3-1]. Il est difficile de contrôler ce bord en déplacement, puisqu'il faut expliciter analytiquement la condition de saut sur la lèvre supérieure et sur la lèvre inférieure de la fissure sur les éléments de bord coupés par la fissure. On contourne cette difficulté en imposant des conditions de Neumann sur ce bord.

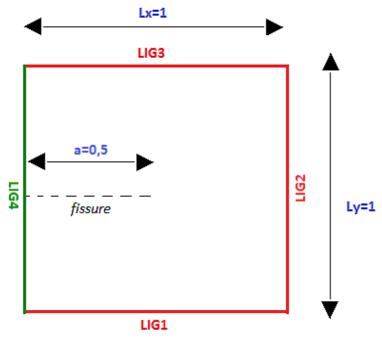


Figure 1.1-1: Géométrie du domaine

Modélisation B:

Même géométrie que la modélisation A.

Modélisation C:

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 4/22 Clé : V3.02.114 Révision

dc6a313d7f52

On incline la fissure d'un angle variable tel que $\alpha \in \{0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}\}$ [Figure 1.1-2].

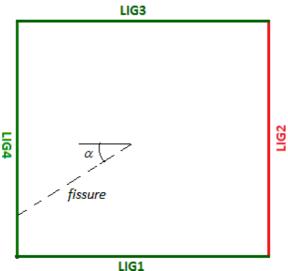


Figure 1.1-2: Fissure inclinée

Notons que la fissure s'est allongée. La nouvelle longueur est:
$$a = \frac{0,5}{max\{\left|\cos(\frac{\alpha\times\pi}{180})\right|, \left|\sin(\frac{\alpha\times\pi}{180})\right|\}}.$$

1.2 Propriétés du matériau

Module d'Young : $E = 10^5 Pa$

Coefficient de Poisson : v=0

1.3 Conditions aux limites et chargements

Le chargement est imposé grâce à des conditions limites mixtes.

Les bords non fissurés sont contrôlés en déplacement, le bord fissuré est contrôlé en force. Par ailleurs, les conditions limites de Dirichlet (en déplacement) fixent la structure et empêchent l'apparition de modes rigides.

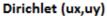
Dans les modélisations A et B, la fissure coupe uniquement le bord LIG4, On impose une condition de Neumann sur ce bord et de Dirichlet sur les 3 autres bords (voir [Figure 1.3-1]).

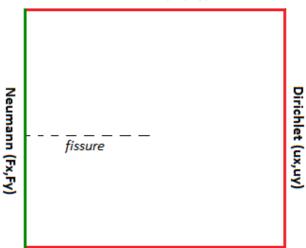
Dans la modélisation C, on généralise la démarche précédente. Pour une inclinaison supérieure à 45° , la fissure coupe soit le bord inférieur (LIGI), soit le bord supérieur (LIG3). Sur ces deux bords aussi on applique une condition de Neumann. On impose donc une condition de Dirichlet sur le bord restant (LIG2) pour fixer les modes rigides(voir [Figure 1.3-2]). Les conditions limites étant imposées symétriquement à la fissure horizontale ($\alpha=0$), les calculs présentés seront valables pour $-135^\circ < \alpha < 135^\circ$

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 5/22 Clé : V3.02.114 Révision

dc6a313d7f52





Dirichlet (ux,uy)

Figure 1.3-1: Conditions limites mixtes pour les modélisations A et B

Neumann (Fx,Fy)

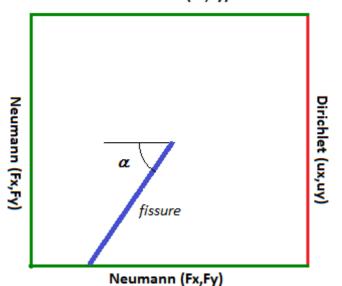


Figure 1.3-2: Conditions limites mixtes pour la modélisation C

Le déplacement imposé correspond à la solution analytique exacte:

$$U_x = \frac{(1+\nu)}{E} \sqrt{\frac{r}{2\pi}} K_I \cos(\frac{\theta}{2}) (3 - 4\nu - \cos\theta)$$

$$U_{\nu} = \frac{(1+\nu)}{E} \sqrt{\frac{r}{2\pi}} K_{I} \sin(\frac{\theta}{2}) (3-4\nu - \cos\theta)$$

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 6/22 Clé : V3.02.114 Révision

dc6a313d7f52

Cette solution dépend des coordonnées polaires liées au référentiel de la fissure [Figure 1.3-3]. Dans la littérature ([13]), la direction de la fissure supporte l'axe \vec{X} . L'axe \vec{X} est orienté du fond de la fissure vers l'extérieur. \vec{Y} est orthogonal à \vec{X} , tel que (\vec{X},\vec{Y}) forme un repère direct.

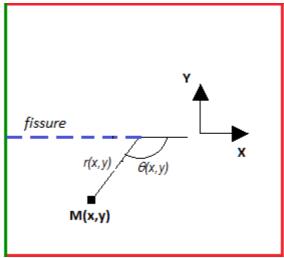


Figure 1.3-3: Référentiel local des formules analytiques

En conséquence, il faut effectuer un changement de base pour adapter les équations analytiques valables dans le référentiel de la fissure, à un repère donné. En particulier, comme l'origine du repère des coordonnées des mailles est choisi au coin inférieur gauche du domaine, on translate les coordonnées polaires:

 θ est l'angle polaire: $\theta(x, y) = arctan2(y-0.5, x-0.5)$

r la distance radiale: $r(x, y) = \sqrt{(x-0.5)^2 + (y-0.5)^2}$

Le tenseur des contraintes solution analytique est :

$$\sigma_{xx} = \frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left(1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right)\right)$$

$$\sigma_{yy} = \frac{K_I}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left(1 + \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right)\right)$$

$$\sigma_{xy} = \frac{K_I}{\sqrt{2\pi r}} \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right)$$

Ensuite, on projette le tenseur des contraintes pour en déduire la densité de force à appliquer sur le bord droit (LIG4), de normale « sortante » $-\vec{X}$.

La force à appliquer est: $\vec{F} = \underline{\sigma} \cdot - \vec{X}$

II vient:
$$F_x = -\sigma_{xx}$$
 et $F_y = -\sigma_{xy}$

Modélisation A:

Par rapport au référentiel de la fissure, les axes « aster » sont orientés dans le même sens. Les champs de déplacement Ux et Uy de référence sont appliqués sur les bords LIG1,LIG2, LIG3 :

Responsable : GÉNIAUT Samuel

dc6a313d7f52

$$U_x = \frac{E}{2(1+\nu)} \sqrt{\frac{r}{2\pi}} K_I \cos(\frac{\theta}{2}) (3 - 4\nu - \cos\theta)$$

$$U_{v} = \frac{E}{2(1+v)} \sqrt{\frac{r}{2\pi}} K_{I} \sin(\frac{\theta}{2}) (3-4v-\cos\theta)$$

De même le tenseur de contraintes référence est conservé. On applique donc la même densité de force explicitée ci-dessus sur le bord LIG4.

$$F_x = -\sigma_{xx}$$
 $F_y = -\sigma_{xy}$

Modélisation B:

Mêmes équations que la modélisation A.

Modélisation C:

On incline la fissure d'un angle de $\alpha \in \{0^\circ, 30^\circ, 60^\circ, 90^\circ, 120^\circ\}$.

Cette rotation impacte l'angle polaire, le champ de déplacement et le tenseur des contraintes. Ces grandeurs effectuent une rotation d'un angle α , par rapport au repère fixe du code aster.

$$\theta \rightarrow \theta - \alpha$$

Cependant cette transformation de l'angle polaire n'est pas valable pour tous les angles, parce que la définition de l'angle polaire n'est pas continue. Dans le référentiel local, de part et d'autre de la fissure on observe un saut angulaire de 2π : de la lèvre inférieure à la lèvre supérieure on passe de $-\pi$ à π .

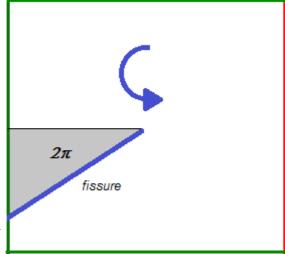
Par conséquent, la rotation de la fissure doit aussi propager cette discontinuité angulaire. Tous les angles balayés par la fissure (zone grisée cf. [Figure 1.3-4] et [Figure 1.3-5]) lors de la rotation, subissent un saut angulaire de -2π ou 2π ,

Si $\alpha > 0$ (la rotation de la fissure s'effectue vers le bas)

- Dans la zone $-\pi < \theta < -\pi + \alpha$ on a : $\theta \rightarrow \theta \alpha + 2\pi$
- Dans la zone $\pi > \theta > -\pi + \alpha$ on a : $\theta \rightarrow \theta \alpha$

Si $\alpha < 0$ (la rotation de la fissure s'effectue vers le haut)

- Dans la zone $\pi > \theta > \pi + \alpha$ on a : $\theta \rightarrow \theta \alpha 2\pi$
- Dans la zone $-\pi < \theta < \pi + \alpha$ on a : $\theta \rightarrow \theta \alpha$



ว2: Statique linéaire des systèmes plans

Manuel de validation

Responsable : GÉNIAUT Samuel

Date: 01/12/2017 Page: 8/22 Clé: V3.02.114 Révision

dc6a313d7f52

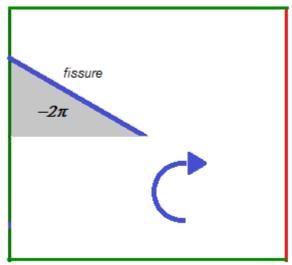


Figure 1.3-5: Domaine de saut angulaire (négatif)

$$\vec{U} \rightarrow R_{\alpha} \vec{U} \text{ où } R_{\alpha} \text{ est la matrice de rotation d'angle } \alpha \text{ avec } R_{\alpha} = \begin{bmatrix} \cos{(\alpha)} & -\sin{(\alpha)} \\ \sin{(\alpha)} & \cos{(\alpha)} \end{bmatrix}$$

Par conséquent,

$$\vec{U} \rightarrow \begin{bmatrix} \cos(\alpha) U_x - \sin(\alpha) U_y \\ \sin(\alpha) U_x + \cos(\alpha) U_y \end{bmatrix}$$

Le tenseur des déformations est aussi impacté par la rotation:

$$\underline{\sigma} \to R_{\alpha} \underline{\sigma} R_{-\alpha}$$

$$\underline{\underline{\sigma}} \to \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{xy} & \sigma_{yy} \end{bmatrix} \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix}$$

$$\underline{\underline{\sigma}} \rightarrow \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} \cos(\alpha)\sigma_{xx} - \sin(\alpha)\sigma_{xy} & \sin(\alpha)\sigma_{xx} + \cos(\alpha)\sigma_{xy} \\ \cos(\alpha)\sigma_{xy} - \sin(\alpha)\sigma_{yy} & \sin(\alpha)\sigma_{xy} + \cos(\alpha)\sigma_{yy} \end{bmatrix}$$

D'où l'écriture finale du tenseur de contraintes :

$$\underline{\underline{\sigma}} \rightarrow \begin{bmatrix} \cos(\alpha)^{2} \sigma_{xx} - \sin(2\alpha) \sigma_{xy} + \sin(\alpha)^{2} \sigma_{yy} & -\frac{1}{2} \sin(2\alpha) (-\sigma_{xx} + \sigma_{yy}) + \cos(2\alpha) \sigma_{xy} \\ -\frac{1}{2} \sin(2\alpha) (-\sigma_{xx} + \sigma_{yy}) + \cos(2\alpha) \sigma_{xy} & \sin(\alpha)^{2} \sigma_{xx} + \sin(2\alpha) \sigma_{xy} + \cos(\alpha)^{2} \sigma_{yy} \end{bmatrix}$$

On vérifie que la rotation conserve la symétrie du tenseur et la trace, $tr(\underline{\underline{\sigma}}) = \sigma_{xx} + \sigma_{yy}$

Responsable : GÉNIAUT Samuel

Date: 01/12/2017 Page: 9/22 Clé: V3.02.114 Révision

dc6a313d7f52

Dans la programmation du fichier de commande, la fissure horizontale est un cas particulier de fissure inclinée: toutes les équations dépendent d'une inclinaison α quelconque. Pour retrouver les modélisation A et B, il suffit de faire $\alpha = 0$ °.

1.4 Solution de référence

On impose $K_I = 1$.

Dans le référentiel lié à la fissure, les équations analytiques deviennent:

$$U_x = \frac{E}{2(1+v)} \sqrt{\frac{r}{2\pi}} \cos(\frac{\theta}{2}) (3-4v - \cos\theta)$$

$$U_{\nu} = \frac{E}{2(1+\nu)} \sqrt{\frac{r}{2\pi}} \sin\left(\frac{\theta}{2}\right) (3-4\nu - \cos\theta)$$

Par linéarité des équations, le tenseur des contraintes est affecté par le même coefficient de proportionnalité et devient :

$$\sigma_{xx} = \frac{1}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left(1 - \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right)\right)$$

$$\sigma_{yy} = \frac{1}{\sqrt{2\pi r}} \cos\left(\frac{\theta}{2}\right) \left(1 + \sin\left(\frac{\theta}{2}\right) \sin\left(\frac{3\theta}{2}\right)\right)$$

$$\sigma_{xy} = \frac{1}{\sqrt{2\pi r}} \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \cos\left(\frac{3\theta}{2}\right)$$

Par construction, il n'existe pas de mode II. Autrement dit, on teste $K_{II}=0$.

Modélisation A:

Cette modélisation permet de valider l'opérateur POST_ERREUR en comparant les valeurs calculées de la norme L^2 du déplacement et de l'énergie de la structure aux valeurs analytiques.

1.4.1 Calcul de la norme L² du déplacement

Soit Ω le domaine occupé par le solide. La norme L^2 du déplacement est définie par :

$$\|\mathbf{u}\|_{L^2}^2 = \int_{\Omega} \|\mathbf{u}\|^2 dS$$
.

On a:

$$||\boldsymbol{u}||^2 = \left(\frac{1+\nu}{E}\right)^2 \frac{r}{2\pi} K_I^2 (\kappa - \cos \theta)^2,$$

pour tout point de $\,\Omega\,$. On a donc :

$$\|\mathbf{u}\|_{L^{2}}^{2} = \left(\frac{1+\nu}{E}\right)^{2} \frac{K_{I}^{2}}{2\pi} \int_{\Omega} r(\kappa - \cos\theta)^{2} dS.$$

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 10/22 Clé : V3.02.114 Révision

dc6a313d7f52

Le domaine Ω est représenté en coordonnées cartésiennes par $\Omega = [-a, a] \times [-a, a]$, où a = LX/2 = LY/2 = 1/2, et peut-être représenté en coordonnées polaires par :

$$\Omega = \left\{ (r, \theta) \in \mathbb{R} \times \left[\frac{-\pi}{4}, \frac{7\pi}{4} \right], r \leq \rho(\theta) \right\},\,$$

où ρ est défini par :

$$\rho(\theta) = \begin{cases} \frac{a}{\cos(\theta)} \text{ pour } \theta \in \left[\frac{-\pi}{4}, \frac{\pi}{4}\right], \\ \frac{a}{\cos\left(\theta - \frac{\pi}{2}\right)} \text{ pour } \theta \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right], \\ \frac{a}{\cos(\theta - \pi)} \text{ pour } \theta \in \left[\frac{3\pi}{4}, \frac{5\pi}{4}\right], \\ \frac{a}{\cos\left(\theta - \frac{3\pi}{2}\right)} \text{ pour } \theta \in \left[\frac{5\pi}{4}, \frac{7\pi}{4}\right]. \end{cases}$$

Considerons la fonction $f:(r,\theta)\rightarrow r^ng(\theta)$. On a :

$$I = \int_{\Omega} f(r, \theta) dS = \int_{0}^{2\pi} \left(\int_{0}^{\rho(\theta)} f(r, \theta) r dr \right) d\theta.$$

Donc:

$$I = \int_{0}^{2\pi} \left(\int_{0}^{\rho(\theta)} r^{n+1} g(\theta) dr \right) d\theta = \frac{1}{n+2} \int_{0}^{2\pi} g(\theta) [\rho(\theta)]^{n+2} d\theta.$$

On a:

$$J = \int_{0}^{2\pi} g(\theta) (\rho(\theta))^{n+2} d\theta = J_1 + J_2 + J_3 + J_4,$$

avec:

$$J_1 = a^{n+2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{g(\theta)}{\cos(\theta)^{n+2}} d\theta$$

$$J_{2} = a^{n+2} \int_{\frac{\pi}{4}}^{3\frac{\pi}{4}} \frac{g(\theta)}{\cos(\theta - \frac{\pi}{2})^{n+2}} d\theta = a^{n+2} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{g(\theta + \frac{\pi}{2})}{\cos(\theta)^{n+2}} d\theta,$$

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 11/22 Clé : V3.02.114 Révision

dc6a313d7f52

$$J_{3} = a^{n+2} \int_{\frac{3\pi}{4}}^{\frac{5\pi}{4}} \frac{g(\theta)}{\cos(\theta - \pi)^{n+2}} d\theta = a^{n+2} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{g(\theta + \pi)}{\cos(\theta)^{n+2}} d\theta,$$

$$J_{2} = a^{n+2} \int_{\frac{5\pi}{4}}^{\frac{7\pi}{4}} \frac{g(\theta)}{\cos\left(\theta - \frac{3\pi}{2}\right)^{n+2}} d\theta = a^{n+2} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{g\left(\theta + \frac{3\pi}{2}\right)}{\cos\left(\theta\right)^{n+2}} d\theta,$$

On a donc finalement:

$$I = \frac{a^{n+2}}{n+2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos\left(\theta\right)^{n+2}} \left[g\left(\theta\right) + g\left(\theta + \frac{\pi}{2}\right) + g\left(\theta + \pi\right) + g\left(\theta + \frac{3\pi}{2}\right) \right] d\theta.$$

On remarque que pour n=1 et $g:\theta \rightarrow (\kappa - \cos(\theta))^2$., on a :

$$I = \int_{\Omega} r(\kappa - \cos \theta)^2 dS$$

On remarque aussi que :

$$(\kappa - \cos \theta)^2 = \kappa^2 + \frac{1}{2} - 2\cos(\theta) + \frac{1}{2}\cos(2\theta)$$

On a donc dans ce cas:

$$g(\theta)+g(\theta+\frac{\pi}{2})+g(\theta+\pi)+g(\theta+\frac{3\pi}{2})=4\kappa^2+2.$$

D'où:

$$\int_{\Omega} r(\kappa - \cos \theta)^2 dS = \frac{a^3}{3} (4 \kappa^2 + 2) \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos(\theta)^3} d\theta.$$

Et finalement :

$$\|\mathbf{u}\|_{L^{2}}^{2} = \left(\frac{1+\nu}{E}\right)^{2} K_{I}^{2} a^{3} \frac{(2\kappa^{2}+1)}{3\pi} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos(\theta)^{3}} d\theta.$$

Soit:

$$\|\boldsymbol{u}\|_{L^{2}} = \frac{1+v}{E} K_{I} a^{\frac{3}{2}} \sqrt{\frac{\left(2 \kappa^{2}+1\right)}{3 \pi} \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos(\theta)^{3}} d\theta} \approx 7,6057690825 \times 10^{-6} \text{m}^{2}.$$

1.4.2 Calcul de l'énergie de la structure

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 12/22 Clé : V3.02.114 Révision

dc6a313d7f52

L'énergie de la structure est définie par :

$$E^e = \frac{1}{2} \int_{\Omega} \mathbf{\sigma} : \mathbf{\varepsilon} \, dS.$$

Puisque v=0 , on a $\varepsilon = \frac{1}{E}\sigma$. D'où :

$$\mathbf{\sigma} : \mathbf{\varepsilon} = \frac{1}{E} \left(\sigma_{xx}^2 + \sigma_{yy}^2 + 2 \sigma_{xy}^2 \right).$$

En utilisant l'expression du tenseur des contraintes donnés précédemment et près développements, on obtient :

$$\sigma : \varepsilon = \frac{K_I^2}{E} \frac{1}{2\pi r} \left(2\cos\left(\frac{\theta}{2}\right)^2 + 2\cos\left(\frac{\theta}{2}\right)^2 \sin\left(\frac{\theta}{2}\right)^2 \right).$$

On remarque que :

$$2\cos\left(\frac{\theta}{2}\right)^2=1+\cos\theta$$
,

$$2\cos\left(\frac{\theta}{2}\right)^2\sin\left(\frac{\theta}{2}\right)^2 = \frac{1}{2}\sin\left(\theta\right)^2 = \frac{1}{4}(1-\cos(2\theta)).$$

On a donc:

$$\sigma: \varepsilon = \frac{K_I^2}{E} \frac{1}{2\pi r} \left(\frac{5}{4} + \cos(\theta) - \cos(2\theta) \right).$$

Soit:

$$E^{e} = \frac{K_{I}^{2}}{E} \frac{1}{4\pi} \int_{\Omega} \frac{1}{r} \left(\frac{5}{4} + \cos(\theta) - \cos(2\theta) \right) dS.$$

On remarque que pour n=-1 et $g:\theta \Rightarrow \frac{5}{4} + \cos(\theta) - \cos(2\theta)$., on a :

$$I = \int_{0}^{\rho(\theta)} \frac{1}{r} \left(\frac{5}{4} + \cos(\theta) - \cos(2\theta) \right) d\theta.$$

On a dans ce cas:

$$g(\theta)+g(\theta+\frac{\pi}{2})+g(\theta+\pi)+g(\theta+\frac{3\pi}{2})=5.$$

D'où:

$$\int_{\Omega} \frac{1}{r} \left(\frac{5}{4} + \cos(\theta) - \cos(2\theta) \right) dS = 5 a \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\cos(\theta)} d\theta = 5 a \left(\ln(3) + 2\sqrt{2} \right).$$

Et finalement :

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 13/22 Clé : V3.02.114 Révision

dc6a313d7f52

$$E^{e} = \frac{K_{I}^{2}}{E} \frac{5a}{4\pi} \left(\ln(3) + 2\sqrt{2} \right) \approx 3,50687407712 \times 10^{-6} \text{ J} \times \text{m}^{-1}.$$

1.5 Références bibliographiques

- [1] GENIAUT S., MASSIN P.: eXtended Finite Element Method, Manuel de référence de Code Aster, [R7.02.12]
- [2] Rice, J. R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks", *Journal of Applied Mechanics* **35**: 379–386
- [3] Satzi, Belytschko: An extended Finite Element Method with Higher-Order Elements for Curved Cracks
- [4] LABORDE P., POMMIER J., RENARD Y., SALAUN M., "High-order extended finite element method for cracked domains", International Journal for Numerical Methods in Engineering, vl. 64, pp. 354-381, 2005

Date: 01/12/2017 Page: 14/22 Responsable : GÉNIAUT Samuel Clé: V3.02.114

Révision dc6a313d7f52

2 Modélisation A

Dans cette modélisation D PLAN, la plaque est fissurée sur une demi-longueur. La fissure est décrite par la méthode XFEM. La fissure est enrichie géométriquement, sur un rayon $R_{ENRI} = 0,1$.

Les éléments sont linéaires de type TRIA3.

2.1 Caractéristiques du maillage

Le carré unitaire est maillé régulièrement [Figure 2.1-1]. Pour construire le maillage, on s'appuie sur un quadrillage régulier 100×100 .

NOMBRE DE NOEUDS: 10201

NOMBRE DE MAILLES: 20400

TRIA3: 20000

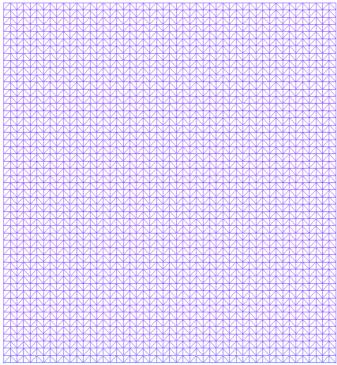


Figure 2.1-1: Maillage avec des éléments-triangles

2.2 Grandeurs testées et résultats

2.2.1 **Grandeurs testées:**

Pour cette fissure horizontale, on teste la valeur des facteurs d'intensité de contraintes K_I et K_{II} ainsi que la valeur du taux de restitution d'énergie $\,G\,$ données par <code>CALC G.</code>

Pour la méthode $G-th\hat{e}ta$ (commande CALC G), on choisi la couronne de champ thêta suivante:

 $R_{inf} = 0.1 a$ et $R_{sup} = 0.3 a$ où a est la longueur de la fissure.

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 15/22 Clé : V3.02.114 Révision

dc6a313d7f52

D'autre part, on teste le champ de déplacement calculé par Code_Aster. Au lieu d'effectuer un test local sur quelques mailles par <code>TEST_RESU</code>, on teste le champ de déplacement sur grand nombre de mailles. Une zone arbitraire de test a été délimitée dans le domaine [Figure 2.2.1-1].

En pratique, on compare : $\|U^{\it calc} - U^{\it ana}\|_{\it L_2} < tolerance \times \|U^{\it ana}\|_{\it L_2}$.

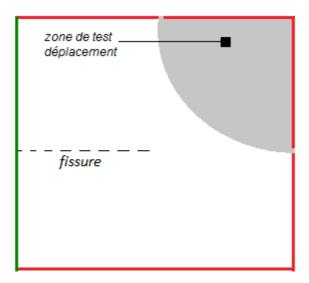


Figure 2.2.1-1: définition du GROUP_MA de test

On teste enfin l'énergie de la structure la norme L^2 du déplacement dans tout le domaine.

2.2.2 Résultats :

Test des facteurs d'intensité de contrainte:

Identification	Référence	Tolérance
CALC_G		
K1	1,00	1,0%
K2	0,00	1,0%
G	1,0 10 ⁻⁵	1,0%

Test de la norme_L2 de l'erreur sur le champ de déplacement: $\|U^{calc} - U^{ana}\|_{L_2} < tolerance \times \|U^{ana}\|_{L_2}$

Identification	Référence	Tolérance
POST_ELEM		
NORME	0,00	0,1%

Test de l'énergie de la structure :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	3,50687407712 10-6	0,1%

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 16/22 Clé : V3.02.114 Révision

dc6a313d7f52

Test de la norme $\,L^2\,$ du déplacement.dans tout le domaine :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	7,6057690825 10 ⁻⁶	0,1%

2.3 Résultats complémentaires :

Sur la [Figure 2.3-1], le champ de déplacement est représenté avec amplification du saut de déplacement à l'interface. On constate que la fissure s'ouvre rigoureusement en $mode\ I$, comme attendu.

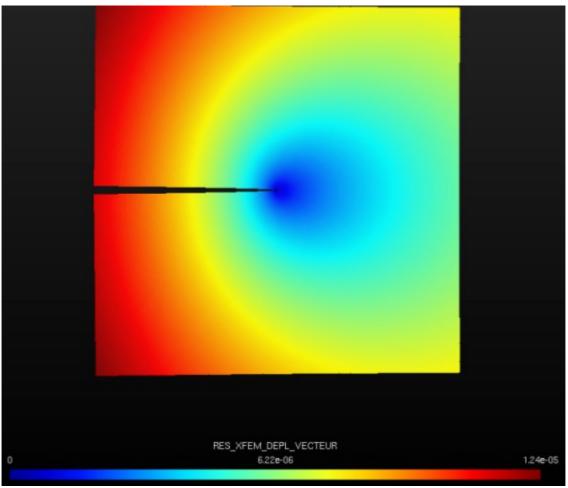


Figure 2.3-1: Champ de déplacement (avec offset)

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 17/22 Clé : V3.02.114 Révision

Révision dc6a313d7f52

3 Modélisation B

Modélisation D_PLAN, avec la méthode XFEM pour représenter la fissure. Éléments quadratiques TRIA6.

3.1 Caractéristiques du maillage

Le carré unitaire est maillé régulièrement [Figure 2.1-1].On conserve le raffinement de la modélisation précédente.

NOMBRE DE NOEUDS: 40401

NOMBRE DE MAILLES : 20400

TRIA6: 20000

3.2 Grandeurs testées et résultats

On teste les mêmes grandeurs que dans la modélisation A.

Test des facteurs d'intensité de contrainte:

Identification	Référence	Tolérance
CALC_G		
K1	1,00	1,0%
K2	0,00	1,0%
G	1,0 10 ⁻⁵	1,0%

Test de la norme_L2 de l'erreur sur le champ de déplacement: $\|U^{calc} - U^{ana}\|_{L_1} < tolerance \times \|U^{ana}\|_{L_2}$

Identification	Référence	Tolérance
POST_ELEM		
NORME	0,00	0,1%

Test de l'énergie de la structure :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	3,50687407712 10 ⁻⁶	0,1%

Date: 01/12/2017 Page: 18/22 Responsable : GÉNIAUT Samuel Clé: V3.02.114 Révision

dc6a313d7f52

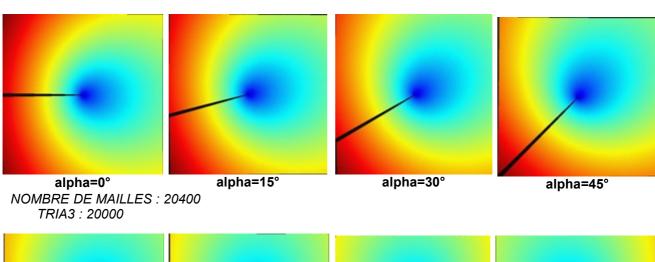
Modélisation C 4

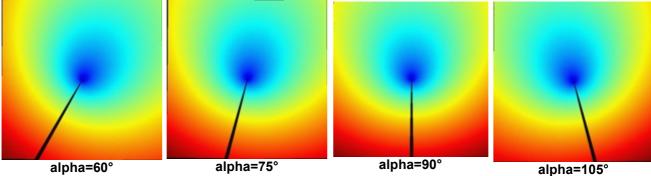
Modélisation D PLAN, avec la méthode XFEM pour représenter la fissure. Éléments quadratiques TRIA3.

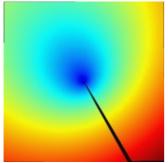
4.1 Caractéristiques du maillage

Le carré unitaire est maillé régulièrement [Figure 2.1-1]. On conserve le raffinement des modélisations précédentes.

NOMBRE DE NOEUDS: 10201







alpha=120°

4.2 Grandeurs testées et résultats

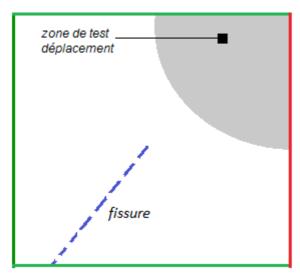
On teste les mêmes grandeurs que dans la modélisation B. On vérifie les facteurs d'intensité de contraintes et le champ de déplacement sur une partie du domaine par rapport aux valeurs analytiques.

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 19/22 Clé : V3.02.114 Révision

dc6a313d7f52

Notons que pour la définition de la zone de test, pour une inclinaison variable, on généralise l'approche de la modélisation A. Selon l'inclinaison de la fissure, on teste le coin du domaine opposé à la fissure (voir [Figure 4.2-1] et [Figure 4.2-2]).



zone de test déplacement fissure

Figure 4.2-1: Définition du GROUP_MA de test

Figure 4.2-2: Définition du GROUP MA de test

Test des facteurs d'intensité de contrainte:

Identification	Référence	Tolérance
CALC_G		
K1	1,00	1,0%
K2	0,00	1,0%
G	1,0 10 ⁻⁵	1,0%

4.3 Résultats complémentaires

Ci dessous, on représente le champ de déplacement (avec offset) pour une inclinaison variable de la fissure.

Date: 01/12/2017 Page: 20/22 Responsable : GÉNIAUT Samuel Clé: V3.02.114 Révision

dc6a313d7f52

Modélisation D 5

Modélisation C PLAN, avec la méthode XFEM pour représenter la fissure. Éléments linéaires TRIA3.

5.1 Caractéristiques du maillage

Le maillage est identique à celui de la modélisation A.

5.2 Grandeurs testées et résultats

On teste les mêmes grandeurs que dans la modélisation A.

Test des facteurs d'intensité de contrainte:

Identification	Référence	Tolérance
CALC_G		
K1	1,00	1,0%
K2	0,00	1,0%
G	1,0 10 ⁻⁵	1,0%

Test de la norme L2 de l'erreur sur le champ de déplacement:

Identification	Référence	Tolérance
POST_ELEM		
NORME	0,00	0,1%

Test de l'énergie de la structure :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	3,50687407712 10-6	0,1%

Test de la norme $\ensuremath{\mathcal{L}}^2$ du déplacement.dans tout le domaine :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	7,6057690825 10-6	0,1%

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 21/22 Clé : V3.02.114 Révision

Révision dc6a313d7f52

6 Modélisation E

Modélisation C_{PLAN} , avec la méthode XFEM pour représenter la fissure. Éléments quadratiques TRIA6.

6.1 Caractéristiques du maillage

Le maillage est identique à celui de la modélisation B.

6.2 Grandeurs testées et résultats

On teste les mêmes grandeurs que dans la modélisation A.

Test des facteurs d'intensité de contrainte:

Identification	Référence	Tolérance
CALC_G		
K1	1,00	1,0%
K2	0,00	1,0%
G	1,0 10 ⁻⁵	1,0%

Test de la norme L2 de l'erreur sur le champ de déplacement:

Identification	Référence	Tolérance
POST_ELEM		
NORME	0,00	0,1%

Test de l'énergie de la structure :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	3,50687407712 10 ⁻⁶	0,1%

Test de la norme L^2 du déplacement.dans tout le domaine :

Identification	Référence	Tolérance
POST_ERREUR		
REFERENCE	7,6057690825 10 ⁻⁶	0,1%

Responsable : GÉNIAUT Samuel

Date : 01/12/2017 Page : 22/22 Clé : V3.02.114 Révision

dc6a313d7f52

7 Synthèse des résultats

Les modélisations A, B, C, D et E montrent que la méthode XFEM permet de retrouver le champ asymptotique de la théorie pour une fissure s'ouvrant en mode $\it I$. On constate que le champ de déplacement est fidèlement représenté puisque, en particulier, on retrouve les valeurs analytiques des facteurs d'intensité de contrainte.

Au paragraphe [19], on a restitué l'évolution du champ de déplacements en fonction de l'angle d'inclinaison, sur une grande plage angulaire. On démontre ainsi que le champ déplacement calculé reste invariant dans le référentiel local lié à la fissure: le champ asymptotique « suit » le mouvement de la fissure, conformément à la théorie. Par conséquent, la géométrie du domaine dans le référentiel de la fissure, la régularité et la « directionnalité » du maillage, n'ont pas d'influence sur la précision des calculs du cas-test, avec des éléments linéaires.

De plus, on ne constate pas l'apparition d'une zone de transition entre les conditions de limites de Dirichlet et Neumann. Par exemple dans la modélisation C, le test sur la norme L2 de l'erreur en déplacement, s'effectue sur le coin subissant à la fois un chargement de Neumann et une condition de Dirichlet. Le déplacement calculé par Aster « colle » à la solution analytique . Faudrait-il aussi s'assurer qu'il en va de même du champ de contraintes ? Des développements dans le code_Aster devraient mettre en place un calcul de la norme en énergie pour confirmer ces observations.

Toutefois, il existe 2 limitations à la validation présentée ci-dessus:

- D'une part, l'inclinaison "à l'infini" de la fissure n'est pas possible dans notre modèle. Dans la modélisation C, l'angle d'inclinaison est compris entre $-135\,^\circ$ et $135\,^\circ$ à cause de la condition limite de Dirichlet sur l'un des bords du domaine. Étant donnée la symétrie du problème, poursuivre cette étude sur le reste du cercle trigonométrique ne paraît pas pertinent.
- D'autre part, la modélisation B montre qu'une validation est possible avec des éléments quadratiques. Cependant, on dénote une dégradation sensible du conditionnement.