Responsable : DELMAS Josselin

Date: 02/06/2016 Page: 1/8 Clé: V3.02.002 Révision

08f1d518b35f

SSLP02 – Traction simple d'une plaque perforée

Résumé:

L'objectif de c e test est de valider le calcul des contraintes dans une plaque perforée soumise à un effort de traction .

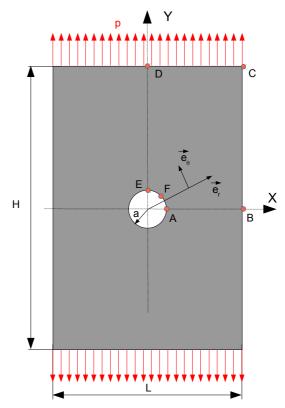
Les quatre modélisations effectuées sont les suivantes :

- Modélisation A: maillage linéaire avec des mailles QUAD4,
- Modélisation B: maillage quadratique avec des mailles QUAD8,
- Modélisation $\,C\,$: maillage linéaire avec des mailles <code>TRIA3</code> ,
- Modélisation D: maillage quadratique avec des mailles TRIA6.

Responsable : DELMAS Josselin

Date : 02/06/2016 Page : 2/8 Clé : V3.02.002 Révision 08f1d518b35f

1 Problème de référence


1.1 Géométrie

• $L = 200 \, mm$

• $h = 300 \, mm$

• a=10 mm

Coordonnées	X	Y
A	10.	0.
В	100.	0.
С	100.	150.
D	0.	150.
E	0.	10.
F	$10.\cos(\frac{\pi}{4})$	$10.\cos(\frac{\pi}{4})$

1.2 Propriétés du matériau

Le matériau est élastique isotrope dont les propriétés sont :

Module d'Young $E=3\times10^4 MPa$

• Coefficient de poisson v = 0.25

1.3 Conditions aux limites et chargements

Déplacement imposé :

• Coté AB : DY = 0. • Coté DE : DX = 0.

Pression imposée coté CD : $p=2.5 N/mm^2$

1.4 Conditions initiales

Aucune

Date: 02/06/2016 Page: 3/8 Responsable: DELMAS Josselin Clé: V3.02.002 Révision

08f1d518b35f

2 Solution de référence

2.1 Méthode de calcul

Le résultat de référence a été obtenu analytiquement avec les hypothèses suivantes :

- La plaque est supposée de dimension infinie,
- Méthode de Muskheliskvili et Kolosov en coordonnées polaires.

$$\sigma_{rr} = \frac{P}{2} \left[\left(1 - \frac{a^2}{r^2} \right) - \left(1 - \frac{4a^2}{r^2} + \frac{3a^4}{r^4} \right) \cos 2\theta \right]$$

$$\sigma_{\theta\theta} = \frac{P}{2} [(1 + \frac{a^2}{r^2}) + (1 + \frac{3a^4}{r^4})\cos 2\theta]$$

$$\sigma_{r\theta} = \frac{P}{2} \left(1 + \frac{2a^2}{r^2} - \frac{3a^4}{r^4} \right) \sin 2\theta$$

2.2 Grandeurs et résultats de référence

Les résultats de référence sélectionnés concernent la contrainte circonférentielle $\sigma_{\theta\theta}$.

$$\sigma_{\theta\theta}(a,\theta) = P(1+2\cos 2\theta)$$

Point	Grandeur	Valeur (N/mm²)
A (a,0)	$\sigma_{_{\theta\theta}}$	7.5
$F\left(a,\frac{\pi}{4}\right)$	$\sigma_{_{\theta\theta}}$	2.5
$E\left(a,\frac{\pi}{2}\right)$	$\sigma_{_{\theta\theta}}$	-2.5

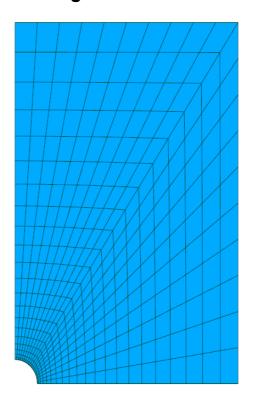
2.3 Incertitudes sur la solution

Solution semi-analytique

2.4 Références bibliographiques

Guide VPCS - Édition 1990. [1]

Date: 02/06/2016 Page: 4/8 Révision Responsable: DELMAS Josselin Clé: V3.02.002


08f1d518b35f

Modélisation A 3

3.1 Caractéristiques de la modélisation

On utilise une modélisation C PLAN.

3.2 Caractéristiques du maillage

Nombre de nœuds : 4 83 Nombre de mailles :

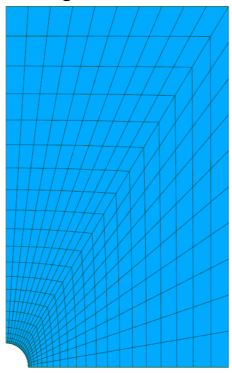
- QUAD4 : 440 SEG2: 106

3.3 Grandeurs testées et résultats

Iden	tification	Type de référence	Valeur de	Tolérance
Point	Grandeur		référence	(%)
A	$\sigma_{\theta\theta}$	'ANALYTIQUE'	7.5	1.5
F	$\sigma_{\theta\theta}$	'ANALYTIQUE'	2.5	2.6
E	$\sigma_{\theta\theta}$	'ANALYTIQUE'	-2.5	0.9

Responsable : DELMAS Josselin Clé : V3.02.002 Révision

08f1d518b35f


Date: 02/06/2016 Page: 5/8

4 Modélisation B

4.1 Caractéristiques de la modélisation

On utilise une modélisation C PLAN.

4.2 Caractéristiques du maillage

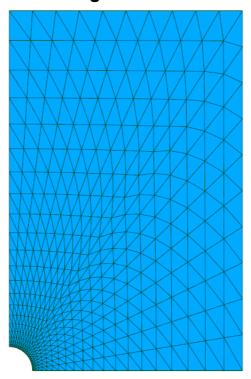
Nombre de nœuds : 1 405Nombre de mailles :

- QUAD 8 : 440 - SEG 3 : 106

4.3 Grandeurs testées et résultats

Identification		Typo do rófóronco	Valeur de	Tolérance
Point	Grandeur	Type de référence	référence	(%)
A	$\sigma_{\!\scriptscriptstyle{\theta}}$	'ANALYTIQUE'	7.5	2.0
F	$\sigma_{\!\scriptscriptstyle{ heta}}$	'ANALYTIQUE'	2.5	4.5
E	$\sigma_{\!\scriptscriptstyle{ heta}}$	'ANALYTIQUE'	-2.5	0.5

Date: 02/06/2016 Page: 6/8 Révision Responsable: DELMAS Josselin Clé: V3.02.002


08f1d518b35f

Modélisation C 5

Caractéristiques de la modélisation 5.1

On utilise une modélisation C PLAN.

5.2 Caractéristiques du maillage

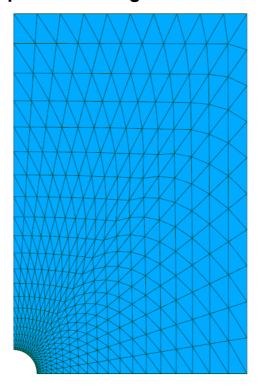
Nombre de nœuds : 4 83 Nombre de mailles :

880 TRIA3 : SEG2: 106

5.3 Grandeurs testées et résultats

Identification		Typo do rófóropos	Valeur de	Tolérance
Point	Grandeur	Type de référence	référence	(%)
A	$\sigma_{\!\scriptscriptstyle{\theta}}$	'ANALYTIQUE'	7.5	2.0
F	$\sigma_{\theta\theta}$	'ANALYTIQUE'	2.5	2.0
E	$\sigma_{\!\scriptscriptstyle{ heta}}$	'ANALYTIQUE'	-2.5	3.6

Date: 02/06/2016 Page: 7/8 Responsable: DELMAS Josselin Clé: V3.02.002


Révision 08f1d518b35f

Modélisation D 6

6.1 Caractéristiques de la modélisation

On utilise une modélisation C PLAN.

Caractéristiques du maillage 6.2

Nombre de nœuds : 1 845

Nombre de mailles :

TRIA6 : 880 : 106 SEG3

6.3 Grandeurs testées et résultats

Iden	tification	Type de référence	Valeur de	Tolérance
Point	Grandeur		référence	(%)
A	$\sigma_{\theta\theta}$	'ANALYTIQUE'	7.5	1.5
F	$\sigma_{\theta\theta}$	'ANALYTIQUE'	2.5	4.5
E	$\sigma_{\!\scriptscriptstyle{ heta}}$	'ANALYTIQUE'	-2.5	0.25

Responsable : DELMAS Josselin

Date : 02/06/2016 Page : 8/8 Clé : V3.02.002 Révision

Révision 08f1d518b35f

7 Synthèse des résultats

Les résultats obtenus sont satisfaisants, I 'écart maximum au point $\mathbb{E}\left(\theta=90^{\circ}\right)$ est de 4, 5 % et de 2. 0 % au point $\mathbb{A}\left(\theta=0^{\circ}\right)$.