Responsable : ALARCON Albert Clé : V2.05.302

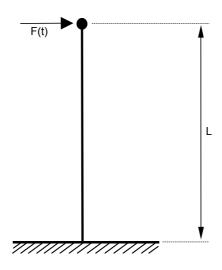
Date: 01/08/2011 Page: 1/6 Clé: V2.05.302 Révision 054678e2a3c0

SDLX302 - Poutre encastrée et masse concentrée soumise à une force aléatoire transverse

Résumé:

Une poutre encastrée avec une masse concentrée est soumise à un effort aléatoire dans la direction transverse.

Ce test valide, à l'aide d'une comparaison entre codes, le calcul des modes propres de flexion et celui du déplacement dans le cadre d'une approche stochastique.


Responsable: ALARCON Albert

Date: 01/08/2011 Page: 2/6 Clé: V2.05.302 Révision

Révision 054678e2a3c0

1 Problème de référence

1.1 Géométrie

Longueur de la poutre Diamètre intérieur Diamètre extérieur Masse concentrée au sommet Moment d'inertie massique

L=20.0 m d=0.388 m D=0.400 m M=300. kg $J=200. kg m^{2}$

1.2 Propriétés des matériaux

Masse volumique du tube

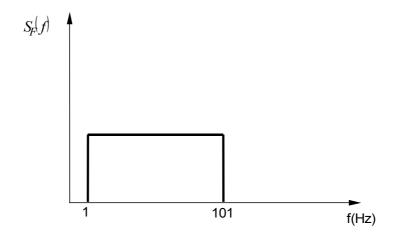
 $\rho = 7850 \, kg.m^{-3}$

Module d'Young

 $E = 210. E + 9 N.m^{-2}$

Coefficient de Poisson v=0.

1.3 Conditions aux limites et chargement


Le tube est encastré à la base. La masse est libre. Le mouvement est autorisé dans un plan vertical $(DX\,,DRZ)$.

Un effort aléatoire F(t), appliqué sur la masse concentrée est assimilé à un processus aléatoire stationnaire Gaussien, centré, de type bruit blanc à bande limitée de $1.{\rm Hz}$ à $101.{\rm Hz}$. Il est caractérisé par un écart type $\sigma_F = 1\,kN$, et une densité spectrale unilatérale en fréquence $S_F(f)$ telle que :

$$\forall f \in [1 \text{ Hz}, 101 \text{ z}]$$

 $S_F(f) = \frac{\sigma_F^2}{100} = 10^4 N^2 \text{ s}$

Responsable : ALARCON Albert Clé : V2.05.302

Date: 01/08/2011 Page: 3/6 Clé: V2.05.302 Révision 054678e2a3c0

2 Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Les calculs sont réalisés avec 8 codes de calculs, pour 10 modélisations. Les différentes modélisations sont présentées ci-dessous.

Castem: 20 éléments de poutre sans cisaillement;
Dynam2D: 20 éléments de poutre sans cisaillement;
PERMAS (1): 20 éléments de poutre sans cisaillement;
NASTRAN: 20 éléments de poutre sans cisaillement;
SYSTUS (1): 20 éléments de poutre sans cisaillement;
ABAQUS: 20 éléments de poutre avec cisaillement;

MECHANICA: 5 éléments de poutre avec cisaillement, convergence au degré 7;

CASTOR: 10 éléments de poutre avec cisaillement;
 SYSTUS (2): 40 éléments de poutre avec cisaillement;
 PERMAS (2): 20 éléments de poutre avec cisaillement;

L'amortissement réduit & vaut 1 % sur tous les modes.

2.2 Résultats de référence

Les fréquences.

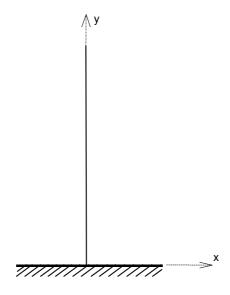
La valeur RMS, pour le déplacement à l'extrémité libre de la poutre.

2.3 Incertitude sur la solution

Comparaison entre codes.

2.4 Références bibliographiques

1) IPSI - Journée Φ^2 . AS - Vol XVIII, n° 2. Amortissement dans les calculs de structures. 21 juin 1994.


Responsable : ALARCON Albert

Date : 01/08/2011 Page : 4/6 Clé : V2.05.302 Révision

Révision 054678e2a3c0

3 Modélisation A

3.1 Caractéristiques de la modélisation

Le long de la poutre, nous avons DY = DZ = DRX = DRY = 0. A la base, tous les degrés de liberté sont bloqués.

3.2 Caractéristiques du maillage

Le maillage est constitué de 21 nœuds et de 20 éléments poutre Timoshenko.

Responsable: ALARCON Albert

Date: 01/08/2011 Page: 5/6 Clé: V2.05.302 Révision

Révision 054678e2a3c0

3.3 Grandeurs testées et résultats

Fréquences propres de flexion

Numéro du mode	1	2	3	4	5	6	7	8	9	10
Castem	0.70	5.04	14.69	28.78	46.19	66.82	92.74	125.15	163.91	208.81
DYNAM2D/DRAM	0.70	5.04	14.67	28.75	46.18	66.86	92.77	125.05	163.38	208.81
PERMAS (1)	0.70	5.04	14.69	28.78	46.19	66.82	92.74	125.15	163.91	208.81
NASTRAN	0.70	5.04	14.67	28.75	46.18	66.86	92.78	125.05	163.48	207.70
SYSTUS (1)	0.72	5.13	14.91	29.19	46.83	67.65	93.64	125.95	164.39	208.61
ABAQUS	0.70	5.02	14.57	28.42	45.40	65.17	89.26	118.50	152.33	
MECHANICA	0.70	5.03	14.62	28.54	45.63	65.60	90.21	120.43	155.88	196.01
CASTOR	0.70	5.03	14.59	28.46	45.48	65.35	89.88	120.24	154.40	194.06
SYSTUS (2)	0.70	5.03	14.59	28.42	45.35					
PERMAS (2)	0.70	5.03	14.60	28.48	45.50	65.29	89.59	119.41	138.42	
Valeurs moyennes	0.70	5.04	14.66	28.66	45.89	66.27	91.51	122.77	157.79	204.69
ASTER	0.70	5.03	14.59	28.43	45.38	65.07	89.17	118.67	153.24	192.40
Ecart Aster	0.00	0.26	0.48	0.79	1.12	1.81	2.56	3.34	2.88	6.00

Valeurs moyennes en %

Déplacement (m): avec Fx = 1000

CASTE M	DYNAM2D	PERMAS (1)	PERMAS (2)	SYSTUS (1)	ABAQUS	Valeur moyenne	ASTER	Ecart (%) Valeur moyenne/ASTER
0.039	0.038	0.041	0.038	0.035	0.039	0.038	0.0344	-9.4

3.4 Remarques

Des problèmes de définition entre effort internes et contraintes ne permettent pas de comparer les résultats d'ASTER avec les autres codes (moment fléchissant et effort tranchant).

Version default

Titre : SDLX302 - Poutre encastrée et masse concentrée sou[...]

Responsable: ALARCON Albert

Date : 01/08/2011 Page : 6/6 Clé : V2.05.302 Révision

Révision 054678e2a3c0

4 Synthèse des résultats

Les résultats de la base modale sont bons puisque l'écart maximum est au maximum de 6% sur la dernière fréquence.

Pour les résultats en déplacement nous obtenons un écart de 9.4.