Responsable : SELLENET Nicolas

Date : 11/08/2017 Page : 1/8 Clé : V1.04.116 Révision

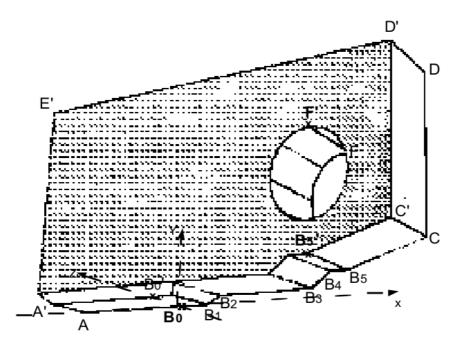
e4df5eb4eb59

PETSC01 - Validation du solveur PETSc en élasticité linéaire 3D

Résumé:

Ce cas-test permet de valider le solveur PETSC en élasticité linéaire 3D sous différentes configurations :

- Commandes éclatées ou opérateurs globaux
- Dualisation et élimination des conditions aux limites (AFFE_CHAR_CINE/MECA)
- Utilisation de PETSC avec la méthode NEWTON_KRYLOV dans l'opérateur de dynamique nonlinéaire


Responsable : SELLENET Nicolas

Date : 11/08/2017 Page : 2/8 Clé : V1.04.116 Révision

e4df5eb4eb59

1 Problème de référence

1.1 Géométrie

La géométrie ne représente qu'un quart de l'éprouvette CTJ25 :

plans de symétrie : $(x B_0 y)$ et $(x B_0 z)$

Épaisseur : DD'=12.5 mm

Face1: (A, B0, B1, B2, B3, B4, B5, C, D, E)

Face2: (A, B0, B0', A')

Coordonnées des points (mm):

	min	max	B0	F'	B5'
x	-20.	42.5	0.	30.	30.
У	0.	30.	0.	20.25	3.5
Z	0.	12.5	0.	12.5	12.5

1.2 Propriétés matériaux

Les propriétés élastiques du matériau sont les suivantes :

• Module d'Young : $E = 2.02702710^{11} Pa$

Coefficient de Poisson : ν = 0.3

1.3 Conditions aux limites et chargements

Tous les nœuds de la face1 : DZ=0 Tous les nœuds de la face2 : DY=0

Responsable : SELLENET Nicolas

Date : 11/08/2017 Page : 3/8 Clé : V1.04.116 Révision

e4df5eb4eb59

Tous les nœuds de la ligne FF':

DX = 0

DY = 0.01

Date: 11/08/2017 Page: 4/8 Révision Responsable: SELLENET Nicolas Clé: V1.04.116

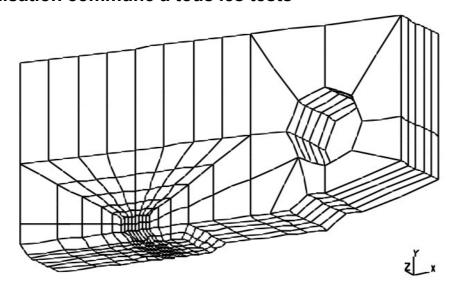
e4df5eb4eb59

Solution de référence 2

Méthode de calcul utilisée pour la solution de référence 2.1

La solution de référence est celle obtenue sur le même maillage avec le code PERMAS, calculs réalisés en 1997.

Résultats de référence et grandeurs testées 2.2


l a salia atia n	Référence	Précision	
Localisation	(<i>mm</i>)		
Point F' DY	1. 10 ⁻²	1.5E-4	
DZ	1.0296 10 -4	1.5E-4	
Point B5' DX	4.3006 10 ⁻³	1.5E-4	
DY	9.2890 10 ⁻³	1.5E-4	
DZ	-2.9173 10 ⁻⁵	1.5E-4	

Date: 11/08/2017 Page: 5/8 Responsable: SELLENET Nicolas Clé: V1.04.116

Révision e4df5eb4eb59

3 Modélisation de référence

3.1 Modélisation commune à tous les tests

Maillage: Nombre de nœuds: 3323 Nombre de mailles: 630 HEXA20

Face1 (A, B1, ..., B5, C, D, E)Découpage : 428 nœuds

> 198 nœuds Face2 (A, B0, B0', A')

Segment FF' 11 nœuds

Nom des nœuds : Point F' = NO2958Point B5' = NO2974

Conditions aux limites:

(GROUP NO='Grno1', DZ=0) en tous les nœuds de la Face1 (GROUP NO='Grno8', DY=0) en tous les nœuds de la Face2

(GROUP NO='Grno7', DX=0, DY=0.01) en tous les nœuds du segment FF '

Date: 11/08/2017 Page: 6/8 Clé: V1.04.116 Révision Responsable: SELLENET Nicolas

e4df5eb4eb59

Modélisation A 4

Opérateur de résolution MECA STATIQUE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et AFFE CHAR CINE).

Solveur PETSC, algorithmes CR et CG (avec pré-conditionnement LDLT incomplet avec niveau de remplissage 0 et renumérotation RCMK).

Modélisation B 5

Opérateur de résolution STAT NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme CR (avec pré-conditionnement LDLT incomplet avec niveau de remplissage 0 et renumérotation RCMK).

6 Modélisation C

Commandes éclatées CALC MATR ELEM, FACTORISER et RESOUDRE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et CALC CHAR CINE).

Solveur PETSC, algorithme CR (avec pré-conditionnement LDLT incomplet avec niveau de remplissage 0 et renumérotation RCMK).

Modélisation D 7

Opérateur de résolution MECA STATIQUE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme CR (pré-conditionnement LDLT SP de factorisation simple précision et sans renumérotation).

Modélisation E 8

Opérateur de résolution STAT NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme CR (pré-conditionnement LDLT SP de factorisation simple précision et sans renumérotation).

9 Modélisation F

Commandes éclatées CALC MATR ELEM, FACTORISER et RESOUDRE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE CHAR MECA et CALC CHAR CINE).

Solveur PETSC, algorithme CR (pré-conditionnement LDLT SP de factorisation simple précision et sans renumérotation).

Responsable : SELLENET Nicolas Clé : V1.04.116 Ré

116 Révision e4df5eb4eb59

Date: 11/08/2017 Page: 7/8

10 Modélisation G

Opérateur de résolution MECA STATIQUE.

Élimination des conditions aux limites cinématiques (AFFE CHAR CINE).

Solveur PETSC, algorithmes CR et GCR (5 résolutions sans renumérotation avec respectivement préconditionnement JACOBI, pré-conditionnement SOR, SANS pré-conditionnement, préconditionnement ML et pré-conditionnement BOOMER).

11 Modélisation H

Opérateur de résolution DYNA NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme GMRES (pré-conditionnement LDLT SP par factorisation simple précision).

12 Modélisation I

Opérateur de résolution DYNA NON LINE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithme GMRES (pré-conditionnement LDLT_SP par factorisation simple précision). Utilisation de la méthode NEWTON KRYLOV à la place de la méthode NEWTON.

13 Modélisation J

Opérateur de résolution MECA STATIQUE.

Dualisation et élimination des conditions aux limites cinématiques (AFFE_CHAR_MECA et AFFE CHAR CINE).

Solveur PETSC, algorithmes CG et GMRES avec pré-conditionnement de type Lagrangien augmenté BLOC LAGR.

Responsable: SELLENET Nicolas

Date : 11/08/2017 Page : 8/8 Clé : V1.04.116 Révision

e4df5eb4eb59

14 Synthèse des résultats

Ce cas-test montre le bon fonctionnement du solveur PETSC dans les différents cas étudiés.