Titre: MFRON05 - Test de l'interface Code_Aster-MFront po[...]

Responsable : HABOUSSA David

Date: 02/07/2015 Page: 1/5 Clé: V1.03.130 Révision

0f05d06d2ba4

MFRON05 – Test de l'interface *Code_Aster-MFront :* pour des lois avec endommagement

Résumé:

Ce test valide certains comportements (par exemple de métaux) avec endommagement définis à l'aide de *MFront* par comparaison avec des comportement similaires de *Code_Aster*.

Modélisation A : cette modélisation permet de valider le modèle élasto-visco-plastique avec endommagement de Hayhurst et intégration implicite, par comparaison au modèle HAYHURST du test SSNV225C sur un point matériel.

Modélisation B : cette modélisation permet de valider le modèle élasto-visco-plastique avec endommagement de Hayhurst et intégration explicite, par comparaison au modèle HAYHURST du test SSNV225A sur un point matériel.

Modélisation C : cette modélisation permet de valider le modèle avec endommagement de Gurson.

Modélisation D : cette modélisation permet de valider le modèle de zone cohésive de Tvergaard.

Titre: MFRON05 - Test de l'interface Code Aster-MFront po[...]

Date: 02/07/2015 Page: 2/5 Responsable: HABOUSSA David Clé: V1.03.130 Révision

0f05d06d2ba4

Modélisation A 1

Caractéristiques de la modélisation 1.1

- Comportement testé: ImplicitHayhurst.mfront. Loi viscoplastique avec endommagement, similaire à la loi HAYHURST [cf R5.03.13].
- Modélisation et données similaires à celles du test SSNV225A [V6.04.225]

Les coefficients du comportement Mfront sont, pour la modélisation A :

Young	145000	
Poisson	0.3	
K	9,691	
eps0	5,82516E-11	
sig0	27,9317	
h1	3,E4	
h2	-280	
H1*	0,33	
H2*	1	
A0	9.707593E-08	
AlphaD	0,5	
DELTA1	1.	
DELTA2	0	

1.2 Grandeurs testées et résultats

Comparaison avec SSNV225C (même solution de référence : SSNV225A)

Identification	Instants (h)	Référence	Tolérance
EPYY	2000	0,020968	1%
EPYY	4000	0,05093	4 %
V11(endo)	2000	0,0323	1 %
V11(endo)	4000	0,06808	0,5 %
dEPYY dt	1520	6,6539E-006	1,5 %

Modélisation B

Caractéristiques de la modélisation 2.1

Modélisation point matériel avec intégration explicite, comparable à SSNV225A, mais en petites déformations.

Comportement testé : Hayhurst.mfront. Loi viscoplastique avec endommagement, similaire à la loi HAYHURST [cf R5.03.13], avec intégration explicite par Runge-Kutta.

Titre: MFRON05 – Test de l'interface Code_Aster-MFront po[...]

Responsable: HABOUSSA David

Date : 02/07/2015 Page : 3/5 Clé : V1.03.130 Révision

Révision 0f05d06d2ba4

0/030000

Modélisation et données similaires à celles du test SSNV225A [V6.04.225]

2.2 Grandeurs testées et résultats

Comparaison avec SSNV225A (les résultats diffèrent par le type de déformation, et sont fournis à titre indicatif)

Identification	Instants (h)	Référence	Tolérance
EPYY	2000	0,020968	15%
V11(endo)	2000	0,0323	12%
dEPYY dt	1520	6,6539E-006	21 %

3 Modélisation C

3.1 Caractéristiques de la modélisation

Comportement testé : GursonTvergaardNeedlemanPlasticFlow_NumericalJacobian.mfront
 Loi élasto-plastique avec endommagement de Gurson (modèle GTN dans la littérature).

Ref: « Analysis of the cup cone fracture in a round tensile bar ». V.Tvergaard, A.Needleman, Acat Metallurgica 32 (1984) 157-169

le critère est de la forme (f est la porosité)

$$F(\sigma, f) = \left(\frac{\sigma_{eq}}{\sigma_0}\right)^2 + 2q_1 f \cosh\left(\frac{3}{2}q_2 \frac{\sigma_h}{\sigma_0}\right) - 1 - (q_1 f)^2 \le 0$$

L'écrouissage isotope est modifié de la façon suivante (

$$R(p) = R0 + Q_1(1 - e^{-b_1 p}) + Q_2(1 - e^{-b_2 p})$$

• Modélisation : point matériel soumis à des déformations imposées :

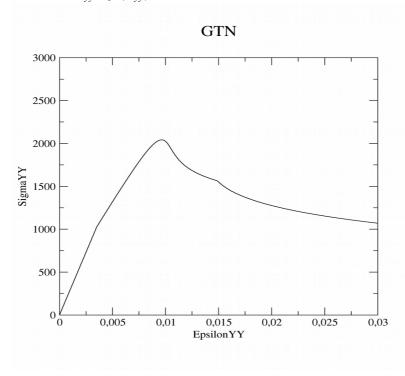
$$\varepsilon_{xx} = 0.02t$$
, $\varepsilon_{yy} = 0.1t$ $\varepsilon_{zz} = 0$

· Propriétés matériau :

Young	200000
Poisson	0.3
R0	500
Q1	1 e9
b1	1 e-6
Q2	0
b2	0
fO	1 e-3
fc	1 e-2

Titre: MFRON05 – Test de l'interface Code_Aster-MFront po[...]

Responsable: HABOUSSA David


Date: 02/07/2015 Page: 4/5
Clé: V1.03.130 Révision

0f05d06d2ba4

delta	2
beta	0
Ср	1.
alp	1 e-5
q1	1,5
q2	1

3.2 Grandeurs testées et résultats

La courbe de réponse $\sigma_{vv} = f(\epsilon_{vv})$ est :

Les tests sont de non régression.

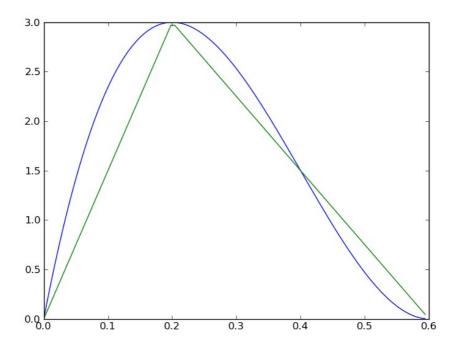
Identification	Instants	Référence	Tolérance
σ_{xx}	0,3	910,12	0,1 %
σ_{yy}	0,3	1069,37	0,1 %
σ_{zz}	0,3	870.308	0,1 %

4 Modélisation D

4.1 Caractéristiques de la modélisation

 Comportement testé: Tvergaard.mfront. Loi de zone cohésive, régularisée en comparaison de la loi CZM_LIN_REG [R7.02.11].

Ref : "A modified version of the Tvergaard model." "Tvergaard V., Effet of fibre debonding in a whisker reinforced metal," "Mater. Sci. Eng., 1990, vol. a125, pp 203-213"


Titre: MFRON05 – Test de l'interface Code_Aster-MFront po[...]

Responsable : HABOUSSA David

Date : 02/07/2015 Page : 5/5 Clé : V1.03.130 Révision

0f05d06d2ba4

La courbe caractéristique contrainte normale - ouverture est la suivante :

Courbe bleue: Tvergaard, courbe verte: CZM_LIN_REG.

 Modélisation : similaire au test SSNP118E [V6.03.118] mais avec une loi de Tvergaard. Les tests sont donc de non régression.

4.2 Grandeurs testées et résultats

Identification	Instants	Référence
u_{x}	1	2.1650635257
σ_n	0,9	1.0475348752
σ_n	1	0.0030176971

5 Synthèse des résultats

Les résultats sont satisfaisants et valident l'interface entre *Code_Aster* et MFRONT pour des comportements avec endommagement.