

Titre : ZZZZ399 – Fréquences d'un oscillateur harmonique q[...]
Responsable : ABBAS Mickaël

Date : 07/12/2017 Page : 1/5 Clé : V1.01.399 Révision

082a8d8d1580

ZZZZ399 – Fréquences d'un oscillateur harmonique quantique à une dimension

Résumé:

L'objectif de ce test est de calculer les fréquences d'un oscillateur harmonique quantique¹ à une dimension, pour la solution stationnaire.

¹ http://fr.wikipedia.org/wiki/Oscillateur_harmonique_quantique

Titre : ZZZZ399 – Fréquences d'un oscillateur harmonique q[...]

Responsable : ABBAS Mickaël

Date: 07/12/2017 Page: 2/5 Clé: V1.01.399 Révision

082a8d8d1580

1 Problème de référence

1.1 Géométrie

Le problème, tout en étant unidimensionnel, est modelisé en deux dimensions (il n'y a pas en ce moment une modélisation 1D pour la thérmique en Code Aster).

Pour des raisons de mise en échelle, on utilise le Système d'unités atomiques².

On considère une bande de longueur $L=10,0\,a_0$ et d'épaisseur $L/100\,a_0$, centrée à l'origine des axes, pour representer l'espace.

Une particule chargée (dans ce cas, un électron), soumise à un potentiel, peut assumer seulement des valeurs spécifiques d'energie, qu'on peut obtenir par résolution de l'equation de Schroedinger :

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi_n(x) + \frac{1}{2}kx^2\psi_n(x) = E_n\psi_n(x)$$

$$n = 0, 1, \dots$$

$$\omega = \sqrt{\frac{k}{m}}$$

Il s'agit d'un problème aux fonctions propres 3 : il faut trouver les valeurs E_n (autovaleurs).

L'équation est de type diffusion (en analogie au calcul de l'équilibre thermique), la résolution des fonctions propres sera faite par un calcul modal.

1.2 Matériaux

Le test utilise deux matériaux : un pour la résolution de l'équation de diffusion ($\lambda=1, \rho_{cp}=1$) et l'autre pour affecter le potentiel, avec ρ_{cp} variable en fonction d'un valeur d'un champ, calculé avec la formule du potentiel.

1.3 Conditions aux limites

On impose la valeur zéro aux extremités du domaine. Il n'y a pas réellement besoin de cette condition, qui est mise pour tester aussi cette mise en données mais qui peut-être enlevée sans modifications.

1.4 Conditions initiales

Néant.

^{2 &}lt;a href="http://fr.wikipedia.org/wiki/Syst%C3%A8me_d%27unit%C3%A9s_atomiques">http://fr.wikipedia.org/wiki/Syst%C3%A8me_d%27unit%C3%A9s_atomiques

^{3 &}lt;a href="http://fr.wikipedia.org/wiki/Fonction_propre">http://fr.wikipedia.org/wiki/Fonction_propre

Titre: ZZZZ399 – Fréquences d'un oscillateur harmonique q[...]

Responsable : ABBAS Mickaël

Date : 07/12/2017 Page : 3/5 Clé : V1.01.399 Révision

082a8d8d1580

2 Solution de référence

Une solution exacte est connue pour ce problème :

$$E_n = \left(n + \frac{1}{2}\right)\hbar\,\omega\tag{1}$$

2.1 Références bibliographiques

[1] ATKINS P.W. Molecular Quantum Mechanics

Titre: ZZZZ399 – Fréquences d'un oscillateur harmonique q[...]

Responsable : ABBAS Mickaël

Date : 07/12/2017 Page : 4/5 Clé : V1.01.399 Révision

082a8d8d1580

3 Modélisation A

3.1 Caractéristiques de la modélisation

On utilise une modélisation PLAN.

3.2 Caractéristiques du maillage

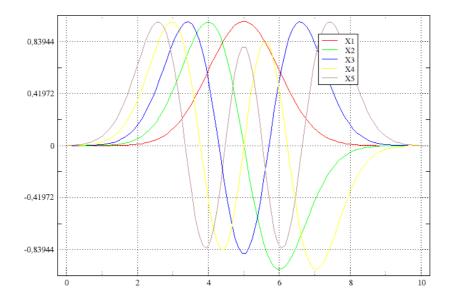
Le maillage contient 212 éléments de type TRIA8.

3.3 Grandeurs testées et résultats

On teste les valeurs de l'énergie calculée à partir des « fréquences » obtenues par le calcul modal, par rapport à la solution exacte.

Lieu	Type de référence	VALE_REFE	Précision
Différence entre solution analytique (1) et calcul	'ANALYTIQUE'	0	5.0E-4

Titre: ZZZZ399 – Fréquences d'un oscillateur harmonique q[...]


Responsable : ABBAS Mickaël

Date: 07/12/2017 Page: 5/5 Clé: V1.01.399 Révision

082a8d8d1580

4 Synthèse des résultats

Voici une visualisation de la partie réelle des fonctions propres calculés. On remarque une altérnance de fonctions symetriques et anti-symetriques, typique de la solution de ce problème.

