Responsable: KAZYMYRENKO Cyril Clé: V1.01.359 Révision

ea706fc654fc

Date: 12/06/2014 Page: 1/8

# ZZZZ359 - Validation de la macro-commande POST CZM FISS / OPTION = 'TRIAXIALITE'

### Résumé

Ce test valide la fonctionnalité disponible sous le mot-clé OPTION = 'TRIAXIALITE' de la macrocommande POST CZM FISS [U4.86.02]. La macro-commande fournit dans ce cas une carte dimensionnée au nombre de mailles portant des éléments cohésifs (joint ou interface), contenant la valeur du taux de triaxialité moyenné dans les éléments du massif directement connectés à chacune de ces mailles. L'objectif est ensuite d'utiliser cette carte comme variable de commande dans l'opérateur AFFE MATERIAU (AFFE VARC / CHAM GD) [U4.43.03] afin de faire varier les paramètres de la loi cohésive avec la triaxialité.

On valide cette fonctionnalité sur un problème simple de traction uniaxiale, pour lequel on dispose d'une solution analytique : il s'agit d'un barreau élastique linéaire sollicité en traction, au centre duquel est disposée une discontinuité régie par un comportement cohésif. On choisit pour ce matériau un coefficient de Poisson nul afin de conserver un état uniaxial puisque les modélisations de ce test sont réalisées en dimension 2 et 3. Les deux modélisations de ce test ont les caractéristiques suivantes :

- modélisation A: modélisation 3D pour le massif, modélisation 3D INTERFACE pour l'interface cohésive, le barreau est entièrement modélisé ;
- modélisation B: modélisation D PLAN pour le massif, modélisation PLAN JOINT pour l'interface cohésive, on ne modélise que la moitié du barreau (condition de symétrie).

Responsable: KAZYMYRENKO Cyril Clé: V1.01.359 Révision

ea706fc654fc

Date: 12/06/2014 Page: 2/8

## Problème de référence

### 1.1 Géométrie

On considère un barreau unidimensionnel de longueur  $2L=199 \, mm$  , au centre duquel est disposée une discontinuité régie par un comportement cohésif.

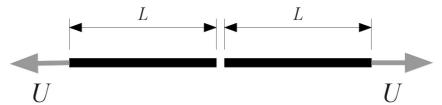


Figure 1.1-a: Barre unidimensionnelle en traction

On note  $\hat{x}$  la variable d'espace, et on repère le centre de la barre par  $\hat{x}=0$ .

### 1.2 Propriétés du matériau

Le comportement du massif est élastique linéaire :

Module d'Young : E=30000 MPa

Coefficient de Poisson : v=0

Le comportement cohésif est décrit par une loi affine en régime adoucissant (CZM TAC MIX pour les éléments d'interface utilisés dans la modélisation A, et CZM LIN REG pour les éléments de joint utilisés dans la modélisation B), dont les paramètres sont les suivants :

Contrainte critique :  $\sigma_c = 3 MPa$ 

Energie de rupture :  $G_c = 0.1 N/mm$ 

Les valeurs des paramètres numériques supplémentaires sont les suivantes :

- PENA LAGR=45000 pour la modélisation A (CZM\_TAC\_MIX)
- PENA ADHERENCE= $10^{-4}$  pour la modélisation B (CZM LIN REG)

### Remarque:

Lorsque l'on ne modélise qu'une moitié du barreau (comme c'est le cas pour la modélisation B) en imposant une condition de symétrie, la valeur de l'énergie de rupture est divisée par 2.

### 1.3 **Conditions aux limites et chargements**

Le problème est unidimensionnel. La barre est sollicitée en traction, en imposant le même déplacement d'intensité  $\ U$  à chacune de ses extrémités.

On fait croître le déplacement imposé selon une rampe allant de U=0à  $U_{test} = 2L \frac{\sigma_c}{F} = 0.0199 \, mm$ 

Titre: ZZZZ359 - Validation de la macro-commande POST CZM[...] Responsable: KAZYMYRENKO Cyril

Clé: V1.01.359 Révision

Date: 12/06/2014 Page: 3/8

ea706fc654fc

### Solution de référence 2

#### 2.1 Méthode de calcul

Notations:

u : déplacement; σ : contrainte ; ε : déformation ;

 $\delta = \|u\|$  : saut de déplacement à travers la discontinuité cohésive;

 $\delta_c = \frac{2G_c}{G_c}$  : saut de déplacement correspondant à la rupture du barreau (contrainte nulle).

Il s'agit d'une solution analytique. Le problème étant unidimensionnel, toutes les quantités sont scalaires et la contrainte est constante en espace. Le problème est symétrique et peut donc être restreint à l'intervalle [0,L] . On dispose alors du jeu d'équations suivant :

Dans le barreau:

(eq1) 
$$\frac{du}{d \, \hat{x}} = \varepsilon$$
 (eq2)

Au niveau de la discontinuité (loi cohésive affine en régime adoucissant) :

$$\delta = \delta_c \left( 1 - \frac{\sigma}{\sigma_c} \right)$$

(eq3)

En intégrant (eq2) sur l'intervalle [0,L] et en utilisant (eq1), on obtient la relation suivante :

$$u(\hat{x}=L)-u(\hat{x}=0)=L\,\varepsilon$$
 , soit  $U-\frac{\delta}{2}=L\,\frac{\sigma}{E}$ 

(eq4)

On note  $\ U_c$  et  $\ U_f$  les déplacements imposés qui correspondent respectivement aux niveaux de contrainte  $G_c$  (seuil d'ouverture de la discontinuité) et 0 (matériau rompu). En appliquant (eq4), il vient:

$$U_c = L \frac{\sigma_c}{E}$$
 et  $U_f = \frac{\delta_c}{2}$ 

(eq5)

On suppose que les valeurs choisies pour les paramètres matériaux E ,  $G_c$  et  $G_c$  , et pour la longueur du barreau  $\ L$  conduisent à une réponse stable du barreau (absence de « snapbacks »). On fait de plus l'hypothèse d'un chargement monotone croissant, on a donc  $U_c \le U \le U_f$  en régime non linéaire. Les valeurs des paramètres matériaux et géométriques doivent donc vérifier l'inégalité suivante :

$$L\frac{\sigma_c}{E} < \frac{\delta_c}{2}$$
 , soit  $\frac{L}{E} < \frac{G_c}{\sigma_c^2}$ 

Responsable : KAZYMYRENKO Cyril

Date : 12/06/2014 Page : 4/8 Clé : V1.01.359 Révision

ea706fc654fc

Lorsque cette inégalité est vérifiée, on peut alors exprimer la contrainte en fonction du déplacement imposé :

$$\sigma = \frac{\frac{\delta_c}{2} - U}{\frac{\delta_c}{2\sigma_c} - \frac{L}{E}}, \forall U \in \left[\frac{L\sigma_c}{E}, \frac{\delta_c}{2}\right]$$

(eq7)

## 2.2 Grandeurs et résultats de référence

A l'instant correspondant au déplacement imposé  $U_{\textit{test}} = 0.0199 \, \textit{mm}$ , on teste la contrainte  $\sigma$  (constante en espace) ainsi que le déplacement u au point  $\hat{x} = 0^+$  (soit le demi saut de déplacement).

$$\sigma = \frac{\frac{\delta_c}{2} - 2L \frac{\sigma_c}{E}}{\frac{\delta_c}{2\sigma_c} - \frac{L}{E}}$$

application numérique :  $\sigma = 1.72344975053 MPa$ 

$$u(\hat{x}=0^{+})=2\delta_{c}(1-\frac{O}{O_{c}})$$
  
 $u(\hat{x}=0^{+})=0.0141838916607 mm$ 

application numérique

| Identification                                                                          | Type de référence | Valeur de référence      |
|-----------------------------------------------------------------------------------------|-------------------|--------------------------|
| Sous le chargement $U_{\it lest} = 0.0199{\it mm}  \text{, en tout point :}  \sigma$    | 'ANALYTIQUE'      | 1.72344975053 <i>MPa</i> |
| Sous le chargement $U_{\textit{test}} = 0.0199  \textit{mm}$ , en $\hat{x} = 0^+$ : $u$ | 'ANALYTIQUE'      | 0.0141838916607 mm       |

Titre : ZZZZ359 - Validation de la macro-commande POST\_CZM[...]
Responsable : KAZYMYRENKO Cyril

Date : 12/06/2014 Page : 5/8 Clé : V1.01.359 Révision

ea706fc654fc

## 3 Principe du test

Le test consiste à définir deux matériaux MATI et MAT2 :

- pour MATI , on définit via <code>DEFI\_MATERIAU</code> / <code>RUPT\_FRAG</code> des paramètres cohésifs constants : <code>GC=G\_c</code> et <code>SIGM C=G\_c</code> ;
- pour MAT2 , on définit via <code>DEFI\_MATERIAU</code> / <code>RUPT\_FRAG\_FO</code> des paramètres cohésifs qui sont des fonctions de la triaxialité (notée  $\alpha$  ):  $GC = f(\alpha).G_c$  et <code>SIGM C=f(\alpha).G\_c</code> ;

En traction uniaxiale la triaxialité vaut  $\alpha$ =1/3 , on choisit alors de définir pour MAT2 une dépendance linéaire à la triaxialité avec une pente valant 3:  $f(\alpha)$ =3  $\alpha$ . De cette manière : les valeurs des paramètres de la loi cohésive dans MAT2 doivent rester constants et identiques à ceux choisis dans MAT1 tout au long de l'historique du chargement.

Le test se déroule alors de la manière suivante :

- 1. définition du matériau MAT1;
- 2. premier appel à STAT\_NON\_LINE avec MAT1 jusqu'à un niveau de déplacement imposé inférieur à  $U_{test}$  ;
- 3. appel à POST CZM FISS sur le résultat mécanique précédemment obtenu ;
- 4. définition du matériau MAT2 en utillisant la carte de triaxialité obtenue avec POST\_CZM\_FISS comme variable de commande;
- 5. avec le matériau MATI , poursuite du calcul avec STAT\_NON\_LINE à partir de l'état mécanique obtenu au point 2 jusqu'au chargement  $U_{test}$  ;
- 6. avec le matériau  $\it MAT2$  , poursuite du calcul avec <code>STAT\_NON\_LINE</code> à partir de l'état mécanique obtenu au point 2 jusqu'au chargement  $\it U_{test}$  .

On s'assure alors que les résultats obtenus sous le chargement  $U_{\it test}$  aux étapes 5 et 6 sont en accord avec la solution analytique présentée précédemment.

Date: 12/06/2014 Page: 6/8 Clé: V1.01.359 Révision Responsable: KAZYMYRENKO Cyril

ea706fc654fc

### Modélisation A : éléments d'interface en dimension 3 4

### 4.1 Caractéristiques de la modélisation

On modélise l'intégralité du barreau. On choisit la modélisation 3D pour le massif, et la modélisation 3D INTERFACE pour l'interface cohésive. Le comportement de l'interface cohésive est régi par la loi de comportement CZM TAC MIX.

### 4.2 Caractéristiques du maillage

Le barreau est modélisée avec un maillage réglé qui comporte :

- 96 PENTA15 et 64 HEXA20 dans la partie qui correspond au massif (en bleu dans la figure ci-
- 12 PENTA15 et 8 HEXA20 dans la partie qui correspond à l'interface cohésive (en rouge dans la figure ci-dessous);

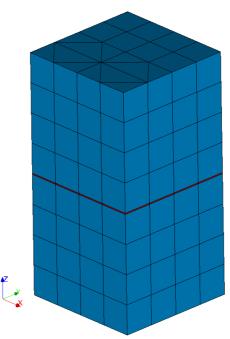


Figure 4.2-a: Maillage A

#### 4.3 Grandeurs testées et résultats

L'axe du barreau correspond à l'axe z , la contrainte  $\sigma$  et le déplacement uexpressions ont été établies précédemment correspondent respectivement aux composantes SIZZ et DZ des champs SIEF ELGA et DEPL (les autres composantes de ces champs étant nulles). On teste alors ces composantes sous le chargement  $U_{\it test}$  :

- en un point de Gauss quelconque du massif pour SIZZ
- , en un nœud quelconque parmi ceux qui sont connectés à la fois à la partie supérieure du massif et à l'interface cohésive.

| Identification | Type de référence | Valeur de référence      |
|----------------|-------------------|--------------------------|
| SIZZ           | 'ANALYTIQUE'      | 1.72344975053 <i>MPa</i> |
| DZ             | 'ANALYTIQUE'      | 0.0141838916607 mm       |

Manuel de validation

Date: 12/06/2014 Page: 7/8 Clé: V1.01.359 Révision Responsable: KAZYMYRENKO Cyril

ea706fc654fc

### Modélisation B : éléments de joint en dimension 2 5

### 5.1 Caractéristiques de la modélisation

On ne modélise que la moitié du barreau. On choisit la modélisation D PLAN pour le massif, et la modélisation PLAN JOINT pour l'interface cohésive. Le comportement de l'interface cohésive est régi par la loi de comportement CZM LIN REG.

### 5.2 Caractéristiques du maillage

Le barreau est modélisée avec un maillage réglé qui comporte :

- 80 TRIA3 et 40 QUAD4 dans la partie qui correspond au massif (en bleu dans la figure ci-
- 8 QUAD4 dans la partie qui correspond à l'interface cohésive (en rouge dans la figure cidessous);

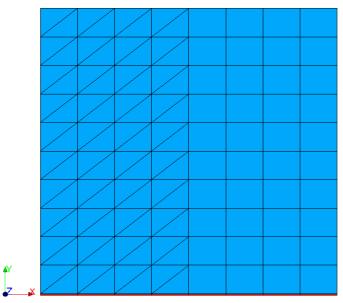


Figure 5.2-a: Maillage B

#### 5.3 Grandeurs testées et résultats

L'axe du barreau correspond à l'axe y , la contrainte  $\sigma$  et le déplacement u dont les expressions ont été établies précédemment correspondent respectivement aux composantes SIYY et DY des champs SIEF ELGA et DEPL (les autres composantes de ces champs étant nulles). On teste alors ces composantes sous le chargement  $U_{{\scriptscriptstyle test}}$ 

- en un point de Gauss quelconque du massif pour SIYY
- pour DY , en un nœud quelconque parmi ceux connectés à la fois à la partie supérieure du massif et à l'interface cohésive.

| Identification | Type de référence | Valeur de référence      |
|----------------|-------------------|--------------------------|
| SIYY           | 'ANALYTIQUE'      | 1.72344975053 <i>MPa</i> |
| DY             | 'ANALYTIQUE'      | 0.0141838916607 mm       |

Responsable : KAZYMYRENKO Cyril

Date : 12/06/2014 Page : 8/8 Clé : V1.01.359 Révision

ea706fc654fc

# 6 Synthèses des résultats

L'objectif de ce test est atteint : valider la fonctionnalité disponible sous le mot-clé OPTION = 'TRIAXIALITE' de la macro-commande POST\_CZM\_FISS.