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Dynamic analysis of structures with viscoelastic 
materials having frequency dependent properties 

Overview:

This reference document tackles the way how advanced capabilities are introduced in Code_Aster to take into
account frequency dependent properties of viscoelastic materials. Computing of harmonic response and modes
of vibration (real or complex) is addressed. Having frequency dependent modes is a step forward for the modal
projection  method  and for  model  updating  with  an experimental  modal  basis as a  reference.  An  iterative
method is used in order to compute frequency dependent modes.
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1 Introduction

ViscoElastic Materials (VEM) are intensively used to solve NVH issues. Damping pads and anti flutter
products reduce the structure borne noise. Sealants and absorbing materials prevent the air borne
transmission. Adhesives are common solutions to assemble parts. Whereas VEM are well known, the
finite element analysis of their dynamic behavior is not straightforward. Most of the time, the use of a
finite element software requires to simplify VEM as elastic materials. This simplification is not always
the obvious thing to do and may lead to inaccurate results.

This reference document addresses the finite element analysis of  structures comprising VEM with
frequency dependent dynamic properties. Conventional approaches are discussed and a method is
proposed to overcome their limitations. The method computes frequency dependent modes using an
iterative algorithm. The way how these modes can be used to improve the modal projection method is
described. Implementation in Code_Aster is explained.

2 Finite element analysis

2.1 State-of-the-art

From a simulation point of view, the frequency response of a structure comprising at least one VEM is
obtained by solving the dynamic equilibrium equation:

([K *
(ω)]−ω

2
[M ] ) {u(ω)}={F (ω)} , (2.1-1)

with [K *
(ω)] , the complex stiffness matrix as:

[K *
(ω)]=[K ' (ω)]+i [K ' ' (ω)] . (2.1-2)

The frequency dependence of the matrix comes from the use of frequency dependent complex moduli
to represent viscoelastic behaviors [1].
In many finite element codes, solving the system of Eq. (2.1-1) is not conventional because it needs
to realize the stiffness matrix for each frequency step and to have computing procedures which are
able to deal with frequency dependent matrices.
The direct response approach consists in solving Eq. (2.1-1) for each frequency step as:

{u(ω)}=([K *
(ω)]−ω

2
[M ] )

−1
{F (ω)} ∀ω∈[0,ωmax] . (2.1-3)

This method has the advantage of computing the exact response of the system. But, as it is necessary
to compute and inverse a complex matrix at each frequency step, the computing time can become
prohibitive for industrial structures with several million degrees of freedom.
A few studies  [2][4] have  shown the interest  to  solve  Eq.  (2.1-1)  with  dedicated modal  response
methods in  order  to  improve  the  computational  efficiency  while  maintaining  the  accuracy  of  the
results. Modal response methods compute frequency responses by projecting the system of Eq. (2.1-
3) on a modal basis [T ] , with the assumption:

{u(ω)}=[T ] {q(ω)} . (2.1-4)

The projection of  the model  on the considered basis leads to a low order model,  that  decreases
significantly the number of degrees of  freedom and consequently the computing time of frequency
responses:

{q(ω)}=([T ]
T
[K *

(ω)][T ]−ω
2
[T ]

T
[M ][T ])

−1
[T ]

T {F (ω)} . (2.1-5)
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Using properties of  elastic models (real  and frequency independent stiffness matrix),  the standard
basis of the popular spectral decomposition method combines normal modes solving of the classical
eigenvalue problem:

([K ]−ωr
2
[M ]) {Φr }={0} (2.1-6)

and  a  static  correction  to  ensure  a  correct  representation  of  the  low  frequency  contribution  of
truncated high frequency normal  modes  [5].  Classically,  [T ]  is  composed by the normal  modes

between 0  and  a minimum of 1.5×ωmax .
However,  frequency dependence of  the VEM dynamic  properties prevents from using the spectral
decomposition method, because the modal basis [{Φr=1,N }]  is only valid at the frequency ωref , for
which it has been computed. In practice, it has been demonstrated [3] the validity domain of the basis
can be extended in a range around the frequency  ωref .  If  the VEM of  the model give increasing
moduli with respect to the frequency, the use of ωref=ωmax  will lead to a larger validity domain than
for any other frequencies. Unfortunately, the validity domain of the basis may not extend over all the
frequency  range  of  interest.  Inaccurate  results  may  be  obtained.  To tackle  this  difficulty,  static
correction  associated  to  the  VEM  can  also  be  taken  into  account.  This  technique,  presented  in
[U2.06.04], leads to very accurate results, but its implementation for an industrial case is tricky.

2.2 Computation of frequency dependent mode

For a frequency dependent real stiffness matrix,  [K (ω)] , the eigenvalue problem of Eq. (2.1-6) is
written as:

([K (ω)]−(ωr (ω))
2
[M ]) {Φr(ω)}={0} , (2.2-1)

where the eigenfrequency, ωr (ω) , and the eigenvector, {Φr(ω)} , are frequency dependent too. For

a fixed,  given  frequency,  ω=ω p ,  such eigensolutions can be obtained by  solving  the standard
problem of Eq. (2.1-6). Hence, the proposed method for solving the frequency dependent problem of
Eq. (2.2-1) consists in using an iterative algorithm searching for:

∣ωr (ω p)−ωp∣<ϵ .ω p ∀ω p∈[ω1,ω2] , (2.2-2)

where ω1  and ω2  are respectively the lower and the upper cut-off frequencies of the eigenproblem
and ϵ  is the convergence criterion of the iterative algorithm. First, for ω p=ω1 , the stiffness matrix
is realized and the eigenproblem of Eq. (2.1-6) is solved. Then, ω p  is updated by taking the value of
the n th  eigenfrequency for which:

∣ωn−ω p∣=min∣ωr=1,N−ω p∣ . (2.2-3)

Next, the stiffness matrix is realized for the new value of ω p  and the eigenproblem of Eq. (2.1-6) is
solved again. The iterations will not stop while

 ∣ωn−ω p∣⩾ϵ .ω p . (2.2-4)

When  the  procedure  converges,  ωn  and  {Φn }  are  extracted  to  form  the  frequency  dependent
eigensolutions of Eq. (2.2-1) and the iterative algorithm will continue using ω p=ωn+1  as the guess
value to compute the next eigensolution. Finally, the algorithm will stop when ω p>ω2 . It means all
the frequency dependent eigensolutions have been computed between ω1  and ω2 .

The  computing  time  of  the  proposed  method  is  classically  driven  by  the  number  of  frequency
dependent modes to be computed, the number of degrees of freedom of the model and the value of
the convergence criterion  ϵ . It is also dependent on the number of normal eigenvalues which are
computed as solutions of Eq. (2.1-6) at each iteration. Having all the eigenvalues between ω1  and
ω2  for each iteration is not necessary and could lead to prohibitive  computing times. In theory, a

minimum of two eigenvalues may be sufficient to run iterations:  ωn  to update ω p  as described in
Eq. (2.2-3) and ωn+1  to continue when the procedure converges. In practice, this minimum number of
eigenvalues will  be determined by the capabilities of the numerical solver for Eq. (2.1-6). It will  be
discussed for Code_Aster in section 3.
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The proposed method can be naturally extended to the study of damped structures comprising VEM.
The  frequency  dependent  eigenvalues  and  eigenvectors  are  then  computed  as  solutions  of  the
following problem:

([K *
(λr)]+λr

2
[M ]) {Ψr }={0 } , (2.2-5)

with  λ r=1,N  the complex eigenvalues, and {Ψr=1,N }  the associated complex modes. In this case,
Eq. (2.2-2) is rewritten as:

∣ω̃ r (ω p)−ω p∣<ϵ .ω p ∀ω p∈[ω1,ω2] , (2.2-6)

with  ω̃ r=∣λ r∣ ,  the corresponding eigenfrequency in  a structural  damping model  [6].  ω p  will  be

updated by taking the value of the nth  eigenfrequency for which:

∣ω̃ n−ω p∣=min∣ω̃ r=1, N−ωp∣ . (2.2-7)

Computing frequency dependent real or complex modes should be a step forward for comparison with
experimental  modal  bases.  Indeed,  when structures  comprising  VEM  are  tested,  their  frequency
dependent behaviors  are physically  measured.  The proposed method could help to validate  or to
update finite element models with experimental references.

2.3 Improvement of the modal projection method

The frequency dependent modes can be used to form the basis of the modal projection method for
response  computations  of  VEM.  They  will  extend  the  validity  domain  of  the  basis  over  all  the
frequency range of interest. In combination to a static correction, either real modes will be used for
weakly damped structures, or complex modes for highly damped structures [3]. The static correction
will be determined with the stiffness matrix realized for ω=0 . Real modes will be preferred to reduce
computing times, since numerical solvers are much more efficient in this case. But for highly damped
structures, the projection base composed with such modes may be insufficient  to obtain accurate
frequency responses. This can be improved using the modified Modal Strain Energy (MSE) method to
reduce the errors [7].

So, frequency dependent real modes, {Φ̂ r (ω)} , become solutions of a modified form of Eq. (2.2-1)

in order to take into account the damping matrix (imaginary part of the stiffness matrix) as:

([K ' (ω)]+β(ω)[K ' '
(ω)]−( ω̂ r (ω))

2
[M ]) {Φ̂ r (ω)}={0} . (2.3-1)

[K '
(ω)]  and  [K ' '

(ω)]  are  defined  by  Eq.  (2.1-2)  and  β(ω)  is  calculated  by  the  following
empirical formula:

β(ω)=
trace [K ' ' (ω)]

trace [K ' (ω)]
, (2.3-2)

where the trace for an N×N  matrix is defined as:

trace [A]=∑
j=1

N

A jj . (2.3-3)

In the iterative algorithm, the use of the modified MSE method leads to calculate  β(ω p)  for each
iteration and to search for the solutions of the resulting eigenvalue problem:

([K '
(ω p)]+β(ω p)[K

' '
(ω p)]−ω̂ r

2
[M ]) {Φ̂ r }={0} . (2.3-4)

Another method to improve the real modes could be the use of residual modes whose purpose is to
represent  the  damping  of  VEM  in  the  modal  projection  basis  [8].  The  coupling  with  frequency
dependent modes has been presented in [U2.06.04].
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3 Implementation in Code_Aster

The approach to frequency dependent modes described above has been implemented in Code_Aster
via  a  macro  command,  namely  DYNA_VISCO.  This  script  uses  standard  commands  existing  in
Code_Aster for  the  conventional  modal  method.  Python  codes  have  been  added  for  the  new
developments:

• definition of a frequency dependent behavior,
• computation of frequency dependent modes by the iterative algorithm,
• frequency response computation with realization of  the stiffness matrix  at each frequency

step.

In  the iterations,  modes are computed as solutions of  Eq.  (2.1-6)  via  the standard  CALC_MODES
command.  The  modal  extraction  method  are  described  in  [9].  Five  eigensolutions  are  searched
around ω p  for each iteration. This number is a good compromise between securing the convergence
of the iterative algorithm and limiting the total computing time. In the case where the algorithm would
not  converge,  the  number  of  the  searched eigensolutions  will  be  automatically  increased by  the
program.
The user  can  define  several  VEM with  different  behaviors  and choose the  frequency  dependent
modes to be used: real modes or beta-modes. At this time of the implementation, it is also possible to
compute  frequency  dependent  complex  modes,  but  they  cannot  be  used  as  a  modal  basis  for
response computation.
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