Date: 12/12/2011 Page: 1/9 Responsable: Josselin DELMAS Clé: V8.22.101 Révision: 7981

AHLV101 - Guide d'onde à sortie anéchoïque

Résumé:

Un guide d'onde rectiligne à sortie anéchoïque, à parois rigides, dont le milieu de propagation est de l'air "normal", est excité par une onde incidente harmonique, normale à la face d'entrée. On calcule le champ de pression acoustique de la réponse harmonique en utilisant la formulation élasto-acoustique en pression-déplacement-potentiel des déplacements.

Les tests concernent 3 modélisations différentes (éléments finis élasto-acoustiques tridimensionnels, bidimensionnels et axisymétriques), ils permettent de valider les matrices de rigidité, de masse, d'impédance et du vecteur source pour les 3 modélisations.

Le résultat de référence provient d'un calcul analytique.

Date: 12/12/2011 Page: 2/9 Responsable: Josselin DELMAS Clé: V8.22.101 Révision: 7981

Problème de référence

1.1 Géométrie

Tube à section rectangulaire :

longueur: $L = l_r = 1.0 \, m$ $h = l_v = 0.1 \, m$ hauteur: largeur: $l = l_z = 0.2 m$

Coordonnées des points (en m):

	A	B	C	D
X	0.	0.	1.00	1.00
\overline{y}	0.	0.05	0.	0.05
\overline{z}	0.20	0.10	0.20	0.10

1.2 Propriétés des matériaux

Air:

$$\rho = 1.3 \, kg. \, m^{-3}$$

 $c = 343. \, m.s^{-1}$

Conditions aux limites et chargement 1.3

Pression d'onde incidente normale à l'entrée $P_i = P_0 * e^{i\omega t}$ Avec $P_0 = 1.0 Pa$

Fréquence $f = 500 \, Hz$

 $Z = \rho c = 445.9 \text{ kg.m}^{-2} \text{ s}^{-1}$ Impédance à l'extrémité CD

Date: 12/12/2011 Page: 3/9 Clé: V8.22.101 Responsable: Josselin DELMAS Révision: 7981

Solution de référence

2.1 Méthode de calcul utilisée pour la solution de référence

Les fréquences de l'excitation sont assez basses et conjointement le guide d'onde est suffisamment long par rapport à ses dimensions latérales pour qu'on se limite aux ondes planes : le phénomène est alors identique en tous points d'un plan d'onde, c'est-à-dire ne dépend pas des coordonnées décrivant les points de ce plan, y et z par exemple.

On donne dans cette hypothèse la solution générale bien connue des équations de l'acoustique pour les deux grandeurs **pression** p et **vitesse acoustique** v:

$$v = f\left(t - \frac{x}{c}\right) + g\left(t + \frac{x}{c}\right)$$
 éq 2.1-1

$$p = \rho c \left[f \left(t - \frac{x}{c} \right) - g \left(t + \frac{x}{c} \right) \right]$$
 éq 2.1-2

Le guide est supposé fermé à l'extrémité d'abscisse L sur une impédance Z_L ; il se produit une réflexion au niveau de cette impédance, ce qui donne une onde de retour g.

En chaque point du guide, il y a alors superposition des deux fonctions f et g; par définition même l'impédance terminale Z_L impose au point d'abscisse L , entre p et v la relation.

$$\frac{p_L}{v_L} = Z_L$$

Dans le cas harmonique f et g s'écrivent :

$$f\left(t - \frac{x}{c}\right) = I e^{i\omega\left(t - \frac{x}{c}\right)}$$
$$g\left(t + \frac{x}{c}\right) = R e^{i\omega\left(t + \frac{x}{c}\right)}$$

où *I* et *R* sont déterminés par les conditions aux limites.

Dans le calcul de l'impédance $Z = \frac{p}{v}$ en tout point x la variable temps cette fois s'élimine, conformément au calcul même des impédances et s'écrit :

$$Z(x) = Z_0 \frac{I e^{-i\omega \frac{x}{c}} - R e^{i\omega \frac{x}{c}}}{I e^{-i\omega \frac{x}{c}} + R e^{i\omega \frac{x}{c}}}$$

Date: 12/12/2011 Page: 4/9 Clé: V8.22.101 Révision: 7981 Responsable: Josselin DELMAS

L'impédance terminale devient :

$$Z_{L} = Z_{0} \frac{I e^{-i\omega \frac{L}{c}} - R e^{i\omega \frac{L}{c}}}{I e^{-i\omega \frac{L}{c}} + R e^{i\omega \frac{L}{c}}}$$

On appelle $Z_0 = \rho c$ l'impédance itérative.

Sur la frontière fluide à l'entrée du guide la condition limite de type onde incidente imposée à $P_i = P_0 e^{i\omega t}$, s'obtient en écrivant à la frontière la relation linéaire suivante :

$$p - \rho c v_n = P_i \qquad \text{éq 2.1-3}$$

où $v_n = v \cdot n$ est la vitesse suivant la normale unitaire n sortante du fluide.

On impose de plus à la sortie du guide une valeur d'impédance terminale $Z_L = Z_0$ qui en fait une extrémité anéchoïque.

L'impédance terminale est égale à l'impédance itérative $\,Z_0\,$ quand $\,R\!=\!0\,$, c'est-à-dire quand il n'y a pas d'onde de retour ; on a alors une onde progressive pure dans le sens de l'onde incidente, soit :

$$v = I e^{i\omega\left(t - \frac{x}{c}\right)}$$

$$p = \rho c I e^{i\omega\left(t - \frac{x}{c}\right)}$$

ainsi la relation d'onde incidente imposée [éq 2.1-3] s'écrit :

$$p - \rho c v_n = p(x=0) + \rho c v(x=0) = 2 \rho c I e^{i\omega t}$$

d'où on identifie $2 \rho c \, I \, e^{i \omega t} = P_i$; on en déduit l'expression de l'onde **progressive** de pression dans le guide lorsqu'on impose P_i à l'entrée du guide :

$$p = \frac{P_i}{2} e^{-i\omega \frac{x}{c}} = \frac{P_0}{2} e^{i\omega \left(t - \frac{x}{c}\right)}$$

Titre : AHLV101 - Guide d'onde à sortie anéchoïque Date : 12/12/2011 Page : 5/9
Responsable : Josselin DELMAS Clé : V8.22.101 Révision : 7981

2.2 Résultats de référence

Pression aux points A, B, C, D (pour les modélisations A, B, C).

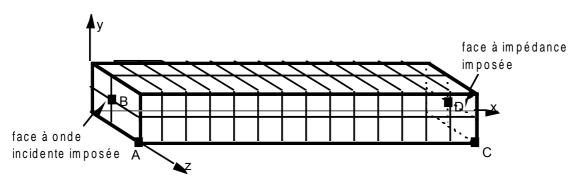
2.3 Incertitude sur la solution

Solution analytique.

2.4 Références bibliographiques

1.F. STIFKENS "Introduction dans le *Code_Aster* de condition limite de type onde incidente en vibro-acoustique - Rapport HP-61/95/026/

Date: 12/12/2011 Page: 6/9


Titre : AHLV101 - Guide d'onde à sortie anéchoïque

Responsable : Josselin DELMAS Clé : V8.22.101 Révision : 7981

3 Modélisation A

3.1 Caractéristiques de la modélisation

Formulation pression-potentiel des déplacements éléments ' $3D_{FLUIDE}$ ' (MEFL_HEXA20 et MEFL_FACE8)

Découpage = 15 mailles HEXA20 selon l'axe des x

2 mailles HEXA20 selon l'axe des y

2 mailles HEXA20 selon l'axe des z

Conditions limites:

ONDE_FLUI: (GROUP_MA: Entrée PRES: 1.0)
IMPE FACE: (GROUP MA: Sortie IMPE: 445.9)

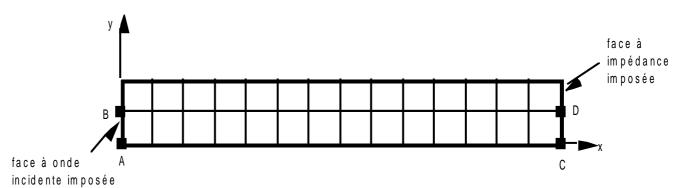
Nom des nœuds A = No1 B = No780 C = No751 D = No763

3.2 Caractéristiques du maillage

Nombre de nœuds : 471

Nombre de mailles et types : 60 HEXA20 8 QUAD8

3.3 Valeurs testées


Localisation	Grandeurs	Référence
\overline{A}	p (réel)	0.5
	p (imag)	0.0
\overline{B}	p (réel)	0.5
	p (imag)	0.0
\overline{C}	p (réel)	-0.482466
	p (imag)	-0.131252
D	p (réel)	-0.482466
	p (imag)	-0.131252

Date: 12/12/2011 Page: 7/9 Responsable: Josselin DELMAS Clé: V8.22.101 Révision: 7981

Modélisation B 4

4.1 Caractéristiques de la modélisation

Formulation pression potentiel des déplacements éléments '2D FLUIDE' (MEFLSE3 et MEFLQU8)

Découpage =

15 mailles QUAD8 selon l'axe des x

2 mailles QUAD8 selon l'axe des y

Conditions limites:

ONDE FLUI: (GROUP MA: Entrée PRES: 1.0 (GROUP MA: Sortie IMPE FACE: IMPE: 445.9)

Nom des nœuds

A = No1

B = No3

C = No751

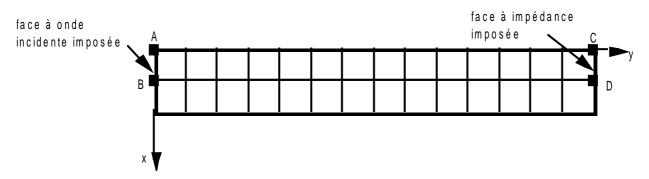
D = No153

Caractéristiques du maillage 4.2

Nombre de nœuds : 125

Nombre de mailles et types : 30 QUAD8 4 SEG3

4.3 Valeurs testées


Localisation	Grandeurs	Référence	Aster	% différence
\overline{A}	p (réel)	0.5	0.499997	6 10-4
	p (imag)	0.0	1.2 10 ^{–5}	-
\overline{B}	p (réel)	0.5	0.499997	6 10-4
	p (imag)	0.0	1.2 10 ^{–5}	-
\overline{C}	p (réel)	-0.482466	-0.482352	2.4 10-2
	p (imag)	-0.131252	-0.131670	3.2 10 ⁻¹
\overline{D}	p (réel)	-0.482466	-0.482352	2.4 10-2
	p (imag)	-0.131252	-0.131670	3.2 10-1

Date: 12/12/2011 Page: 8/9 Responsable: Josselin DELMAS Clé: V8.22.101 Révision: 7981

Modélisation C 5

5.1 Caractéristiques de la modélisation

Formulation pression-potentiel des déplacements éléments 'AXIS FLUIDE' (MEAXFLS3 et MEAXFLQ8)

Découpage =

- 15 mailles QUAD8 selon l'axe des y
- 2 mailles QUAD8 selon l'axe des x

Conditions limites:

ONDE FLUI: (GROUP MA: Entrée PRES: 1.0 IMPE FACE: (GROUP MA: Sortie IMPE: 445.9)

Nom des nœuds A = No1 B = No3

C = No151

D = No153

5.2 Caractéristiques du maillage

Nombre de nœuds :

30 QUAD8 4 SEG3 Nombre de mailles et types :

5.3 Valeurs testées

Localisation	Grandeurs	Référence	Aster	% différence
\overline{A}	p (réel)	0.5	0.499997	6 10–4
	p (imag)	0.0	1.2 10 ⁻⁵	-
\overline{B}	p (réel)	0.5	0.499997	6 10–4
	p (imag)	0.0	1.2 10 ^{−5}	-
\overline{C}	p (réel)	-0.482466	-0.482352	2.4 10-2
	p (imag)	-0.131252	-0.131670	3.2 10 ⁻¹
\overline{D}	p (réel)	-0.482466	-0.482352	2.4 10-2
	p (imag)	-0.131252	-0.131670	3.2 10 ⁻¹

Titre : AHLV101 - Guide d'onde à sortie anéchoïque

Date : 12/12/2011 Page : 9/9

Responsable : Josselin DELMAS Clé : V8.22.101 Révision : 7981

6 Synthèse des résultats

La discrétisation est forte puisqu'elle est d'environ 45 nœuds par longueur d'onde. C'est pourquoi nous obtenons des résultats d'une précision élevée : la pression calculée par *Code_Aster* au point le moins favorable diffère de la valeur théorique de moins de 1%.

Il faut noter aussi que toutes les modélisations utilisées donnent des résultats identiques.