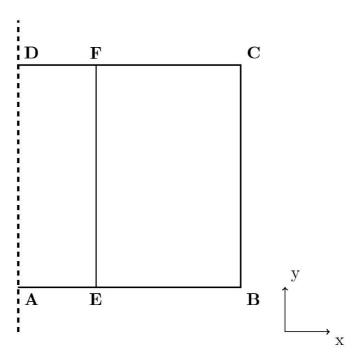
Titre: WTNA111 - Modélisation axisymétrique d'un joint av[...]

Date: 08/08/2011 Page: 1/5 Responsable: Sylvie GRANET Clé: V7.33.111 Révision: 6802

WTNA111 - Modélisation axisymétrique d'un joint avec couplage hydro-mécanique

Résumé:

Le test présenté ici permet de vérifier le bon fonctionnement des éléments de joints avec couplage hydromécanique en modélisation axisymétrique.


Titre: WTNA111 - Modélisation axisymétrique d'un joint av[...] Date: 08/08/2011 Page: 2/5

Responsable: Sylvie GRANET Clé: V7.33.111 Révision: 6802

Problème de référence

1.1 Géométrie

On considère un massif rocheux axisymétrique. Il est séparé en deux parties par une discontinuité verticale [EF].

Coordonnées des points (en mètres) :

Propriétés du matériau 1.2

•Propriétés du fluide intersticiel (eau liquide) :

Masse volumique $1000 \, kg.m^{-3}$ Viscosité $1.10^{-3} Pa.s$ Compressibilité $3.10^9 Pa$

•Propriétés du massif :

Le massif est élastique et a les propriétés suivantes :

Module d'Young 200 *MPa* Coefficient de Poisson 0,25

Titre: WTNA111 - Modélisation axisymétrique d'un joint av[...] Date: 08/08/2011 Page: 3/5
Responsable: Sylvie GRANET Clé: V7.33.111 Révision: 6802

Porosité 0,4055

Perméabilité intrinsèque $1,688.10^{-17} m^2$

•Propriétés de la discontinuité :

Le comportement mécanique de la discontinuité est donné la loi de Bandis. Son expression est détaillée dans la documentation de référence [R7.02.15].

Les paramètres matériaux utilisés sont :

Rigidité normale initiale $K_{\rm ni}$ 1.10⁹ $Pa.m^{-1}$

Ouverture asymptotique $U_{m,q,x}$ 5,0 mm

Coefficient γ

Rigidité tangentielle $K_{\rm t}$ 1.10¹² $Pa.m^{-1}$

1.3 Conditions initiales

Les conditions initiales sont les suivantes :

•ouverture initiale du joint ε_0 : 1,95.10⁻⁵ m

•pression hydraulique initiale dans le massif : 0,0 MPa

•contrainte initiale de compression radiale et orthoradiale : 12,3 MPa

1.4 Conditions aux limites

Les conditions aux limites mécaniques et hydrauliques sont les suivantes :

•Sur [AB] : pression hydraulique imposée de 1,0 MPa

•Sur [BC]: pression mécanique imposée de $12.3 \, MPa$ et flux hydraulique nul

•Sur [CD] : déplacements bloqués en y et flux hydraulique nul

•Sur [DA]: déplacements bloqués en x et flux hydraulique nul

Titre: WTNA111 - Modélisation axisymétrique d'un joint av[...]

Date: 08/08/2011 Page: 4/5 Responsable: Sylvie GRANET Clé: V7.33.111 Révision: 6802

Modélisation A 2

2.1 Caractéristiques de la modélisation

La modélisation est réalisée en axisymétrique avec 455 éléments TRIA3 pour le massif et 30 éléments QUA4 pour la discontinuité.

Discrétisation en temps :

- •25 pas de temps pour les 1000 premières secondes
- •25 pas de temps pour les 3000 secondes suivantes.

Grandeurs testées et résultats 2.2

En l'absence de solution de référence, on effectue uniquement des tests de non régression.

On teste la pression dans le joint en deux points à deux instants différents.

X(m)	Y(m)	Temps (secondes)	PRE1(MPa) Aster
0,35	0,112	1000	0,948
0,35	0,483	1000	0,822
0,35	0,112	3000	0,968
0,35	0,483	3000	0,889

On teste également le déplacement normal sur les lèvres de fissure à deux instants différents.

X(m)	Y(m)	Temps (secondes)	$DX(\mu m)$ Aster
0,35001	0,112	1000	292,5058
0,34999	0,112	1000	292,5197
0,35001	0,112	3000	478,6191
0,34999	0,112	3000	478,6331

Version default

Titre: WTNA111 - Modélisation axisymétrique d'un joint av[...]

Responsable: Sylvie GRANET

Date : 08/08/2011 Page : 5/5 Clé : V7.33.111 Révision : 6802

3 Synthèse des résultats

En l'absence de solution de référence, on effectue simplement des tests de non régression. Les résultats sont conformes à ce que l'on attend physiquement.