

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET Date : 10/04/2013 Page : 1/8 Clé : V7.32.124 Révision : 10830

Version

default

WTNP124 – Cas test de Liakopoulos : Drainage d'une colonne d'eau par la seule force de gravité

Résumé :

Ce cas test est la simulation de l'expérience de Liakopoulos de 1965 qui représente le drainage d'une colonne de sable saturée en eau. Cette dernière va alors se désaturer par la seule force de gravité. Pour représenter cela, on considère une colonne de 1 m de hauteur soumise au sommet à une pression de gaz atmosphérique.

Il s'agit d'un calcul purement hydraulique miscible. La géométrie représentée correspond à un barreau vertical. Les termes de transfert sont décrits par un modèle de Mualem Van-Genuchten. Le problème est traité par les différents schémas disponibles pour la modélisation des écoulements diphasiques : les éléments finis classiques, les Volumes Finis Décentrés Arête , les Volumes Finis Décentrés Maille et les Volumes Finis Centrés.

Manuel de validation

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET Version

1 Problème de référence

Ce cas-test représente la désaturation d'une colonne initialement saturée en eau par effet gravitaire (expérience de Liakopoulos). Ici nous considérons que l'air peut se dissoudre dans l'eau (version proposée par VAUNAT en 1997).

1.1 Géométrie

Le domaine est un barreau de taille $[0m; 0, 1m] \times [0m; 1m]$.

1.2 Propriétés des matériaux

On ne donne ici que les propriétés dont la solution dépend, sachant que le fichier de commandes contient d'autres données de matériau qui ne jouent aucun rôle dans la solution du problème traité.

Eau liquide	Masse volumique $(kg \cdot m^{-3})$	1000
	Masse molaire $(kg.mol^{-1})$	10^{-2}
	Viscosité $(kg.m^{-1}.s^{-1})$	10^{-3}
	compressibilité	0,5 10 ⁻⁹
Gaz	Masse volumique $(kg \cdot m^{-3})$	810 ⁻²
	Masse molaire $(kg.mol^{-1})$	$28,9610^{-3}$
	Viscosité $(kg.m^{-1}.s^{-1})$	$1,810^{-5}$
Gaz dissous	Coefficient de Henry $(Pa.mol^{-1}.m^3)$	210^{-6}
Vapeur	Masse volumique $(kg \cdot m^{-3})$	1810 ⁻³
Paramètres homogénéisés	Perméabilité $k (m^2)$	10 ⁻¹²
	Porosité	0,2975
	Fick gaz $(m^2.s^{-1})$	0
	Fick liquide $(m^2 \cdot s^{-1})$	0
Paramètres de Van-Genuchten	N	2
	$P_r MPa$	10^{4}
	S_{rl}	0
	S _{gr}	0
	Smax	0,999
État initial	Pression liquide	$P_l^0 = \rho g Y + 1 atm - \rho g$
	Pression de gaz	$P_g^0 = 1 atm$

Tableau 1.2-1 : Propriétés des matériaux

Fascicule v7.32 : Thermo-hydro-mécanique en milieu poreux non-saturé

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET Date : 10/04/2013 Page : 3/8 Clé : V7.32.124 Révision : 10830

Les courbes de saturation et de perméabilités obéissent au modèle Mualem-Van-Genuchten (HYDR_VGM). Il faut donc définir dans les matériaux les paramètres n, Pr, Sr, Smax. On rappelle que ces modèles sont : et

$$S_{le} = \frac{S_{l} - S_{lr}}{1 - S_{lr}} m = 1 - \frac{1}{n}$$
$$S_{we} = \frac{1}{\left[1 + \left(\frac{P_{c}}{P_{r}}\right)^{n}\right]^{m}}$$

La perméabilité relative à l'eau s'exprime en intégrant le modèle de prédiction proposé par Mualem (1976) dans le modèle de capillarité de Van Genuchten : $k_r^l = \sqrt{S_{I_e}} (1 - (1 - S_{I_e}^{\frac{1}{m}})^m)^2$

La perméabilité au gaz est formulée de façon similaire : $k_r^g = \sqrt{(1-S_{le})}(1-S_{le}^{\frac{1}{m}})^{2m}$

On rappelle que pour S > Smax, ces courbes sont interpolées par un polynôme de degré 2 C1 en Smax.

1.3 Conditions aux limites et initiales

Les conditions limites sont les suivantes :

•des conditions de Neumann sur les bords droit et gauche du domaine :

$$(\boldsymbol{F}_{l}^{w} + \boldsymbol{F}_{g}^{w}) \cdot \boldsymbol{n} = 0$$
$$(\boldsymbol{F}_{l}^{c} + \boldsymbol{F}_{g}^{c}) \cdot \boldsymbol{n} = 0$$

des conditions de Dirichlet sur la partie haute du domaine (surface à l'air libre):

$$P_{g}(x, y=1, t)=10^{\circ} Pa$$

• des conditions de Dirichlet sur la partie basse du domaine (milieu saturé; l'eau s'écoule):

$$P_g(x, y=0, t)=10^5 Pa$$

 $P_1(x, y=0, t)=10^5 Pa$

L'état initial correspond à un état saturé en eau à l'équilibre hydrostatique. Les conditions initiales sont les suivantes :

$$P_{l}(x, y, t=0) = \rho g(Y-1) + 10^{3}$$

 $P_{a}(x, y, t) = 0 = 10^{5} Pa$

1.4 Temps de simulation

Le calcul est effectué sur un an $(3.1536.10^7 s)$.

Manuel de validation

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET Date : 10/04/2013 Page : 4/8 Clé : V7.32.124 Révision : 10830

Version

default

2 Modélisation A

2.1 Caractéristiques de la modélisation A

Modélisation <code>D_PLAN_HH2SUDM</code>. Cette modélisation correspond à la modélisation Volume Finis Décentrés Maille. Couplage <code>LIQU_AD_GAZ</code>. On utilise un maillage constitué de de 50 éléments <code>QUAD8</code>.

2.2 Résultats

On trace les profils de pression capillaire et de pression de gaz à différents instants :

Illustration 1: Pression capillaire le long de la colonne

Illustration 2: Pression de gaz le long de la colonne

non-saturé

Code Aster

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET Date : 10/04/2013 Page : 5/8 Clé : V7.32.124 Révision : 10830

On observe bien une désaturation progressive du milieu (lorsque la pression capillaire devient positive). La désaturation sur toute la colonne et l'état permanent sont obtenus au bout d'une journée (86400 s). Les profils de pression de gaz ont une allure en « pointe » dont la rupture de pente correspond au front de saturation. En zone saturée, la pression de gaz est contrôlée par la quantité d'air dissous ; au-dessus du front de saturation, le flux d'air est essentiellement lié au mouvement d'air sec. Cette allure de courbe est typique de ce type de problème et correspond bien à ce que l'on trouve dans la littérature.

2.3 Valeurs testées

Ce cas-test n'a pas de valeur de référence précises, on en fait donc un cas de non régression.

Points (x, y)	Temps (s)	PRE1 Aster	PRE2 Aster
(0,05;1)	200s	3377.	1.00E+05
N103	86400 s	9811.	1.00E+05
(0,05;0,5) N229	86400 s	4911.	1.00E+05

On effectue des tests sur 6 valeurs :

Tableau 2.3-1 : Valeurs testées

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET Version

3 Modélisation B

3.1 Caractéristiques de la modélisation B

Modélisation D_PLAN_HH2SUDA. Cette modélisation correspond à la modélisation Volume Finis Décentrés Arêtes. Couplage LIQU_AD_GAZ. On utilise un maillage constitué de 50 éléments QUAD8.

3.2 Résultats

Les résultats sont très proches de ceux obtenus avec la modélisation volumes finis décentrés sur la maille.

3.3 Valeurs testées

Ce cas test n'a pas de valeur de référence, on en fait donc un cas de non régression.

On effectue des tests sur 6 valeurs :

Points (x, y)	Temps (s)	PRE1 Aster	PRE2 Aster
(0,05;1)	200s	60.15.	98259.
N103	86400 s	9810.	1.00E+05
(0,05;0,5) N229	86400 s	4912.	1.00E+05

Tableau 3.3-1 : Valeurs testées

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET
 default

 Date : 10/04/2013
 Page : 7/8

 Clé : V7.32.124
 Révision : 10830

Version

4 Modélisation C

4.1 Caractéristiques de la modélisation C

Modélisation D_PLAN_HH2SUC. Cette modélisation correspond à la modélisation Volume Finis Centrés. Couplage LIQU_AD_GAZ. On utilise un maillage constitué de 50 éléments QUAD8.

4.2 Résultats

Les résultats sont très proches de ceux obtenus avec la modélisation volumes finis décentrés sur la maille.

4.3 Valeurs testées

Ce cas test n'a pas de valeur de référence, on en fait donc un cas de non régression.

On effectue des tests sur 6 valeurs :

Points (x, y)	Temps (s)	PRE1 Aster	PRE2 Aster
(0,05;1) <i>N103</i>	200s	3384.	1.00E+05 .
	86400 s	9811.	1.00E+05
(0,05;0,5) N229	86400 s	4911.	1.00E+05

Tableau 4.3-1 : Valeurs testées

Titre : WTNP124 – Cas test de Liakopoulos : Drainage d'une[...] Responsable : Sylvie GRANET
 default

 Date : 10/04/2013
 Page : 8/8

 Clé : V7.32.124
 Révision : 10830

Version

5 Modélisation D

5.1 Caractéristiques de la modélisation D

Modélisation D_PLAN_HH2S. Cette modélisation correspond à la modélisation Elements Finis. Couplage LIQU_AD_GAZ. On utilise un maillage constitué de 50 éléments QUAD8.

5.2 Résultats

Les résultats sont très proches de ceux obtenus avec la modélisation volumes finis décentrés sur la maille.

5.3 Valeurs testées

Ce cas test n'a pas de valeur de référence, on en fait donc un cas de non régression.

Points (x, y)	Temps (s)	PRE1 Aster	PRE2 Aster
(0;0,049)	200s	-124.6	99689.
N51	1800s	-9.475	99659.
	86400 s	600.1	1.00E+05
(0;1)	200s	3445.	1.00E+05
N2	1800s	5604.	1.00E+05
	86400 s	9811.	1.00E+05

Tableau 5.3-1 : Valeurs testées

6 Synthèse des résultats

Ce cas test propose une modélisation de l'expérience très classique de Liakopoulos. Les simulations reproduisent parfaitement les résultats attendus, même si nous ne disposons pas de résultats numériques de référence. Ce test nous permet de valider la bonne prise en compte de la gravité par les différents schémas numériques. Ce problème est en effet traité avec les 4 schémas numériques disponibles pour la modélisation des écoulements diphasiques :

- les 3 schémas volumes finis : centrés, décentrés arête, décentrés maille
- les éléments finis classiques

Les résultats obtenus sont les mêmes. En terme de performance et de fiabilité, on privilégiera fortement les schémas Volumes Finis Décentrés Arête (*_HH2SUDA).