

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Version

## WTNV144 - Consolidation d'une colonne de sol poro-élastique saturée et fracturée :utilisation de la méthode XFEM

#### Résumé :

Il s'agit d'un test de validation permettant de s'assurer du bon fonctionnement de la méthode des éléments finis étendue dans le cas du modèle de couplage HM en milieu saturé fracturé.

Le but de ce test de validation est de tester la bonne prise en compte de la discontinuité du champ de pression dans le massif de part et d'autre de la fracture ainsi que le comportement hydromécanique des éléments HM-XFEM.

Il s'agit d'imposer en haut d'une colonne de sol deux chargements différents de part et d'autre de la fracture et d'observer l'évolution de la pression de pore dans chaque partie. Ce test est similaire au cas de validation wtnl100 à la seule différence que nous introduisons dans la modélisation une fracture (de type interface) traitée par l'approche XFEM. Les résultats sont ensuite comparés à la solution analytique du cas de validation wtnl100.

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Version

## **1** Problème de référence

### **1.1** Géométrie du problème 2D (modélisation A et B)

Soit une colonne de sol de longueur L=LX et de hauteur H=10m. Cette colonne présente en  $X=L_d$  une discontinuité de type interface (interface non maillée qui est introduite dans le modèle par l'intermédiaire des *level-sets* grâce à l'opérateur DEFI\_FISS\_XFEM ). Le barreau est entièrement traversé par la discontinuité (au niveau de l'approximation des champs de déplacement et de pression de pore du massif, on ne prend en compte que l'enrichissement **Heaviside**).

La température au sein de la colonne est uniforme quel que soit l'instant t. La colonne est de plus entièrement saturée par un fluide (de l'eau par exemple) et les effets des forces de pesanteur ne sont pas pris en compte.

Afin d'avoir une solution unidimensionnelle (selon la direction y du repère d'espace) le coefficient de Poisson est pris nul.

Sur la Figure1.1-1 est représentée la géométrie de la colonne de sol.



Figure1.1-1: Géométrie du problème 2D

### **1.2** Géométrie du problème 3D (modélisations C et D)

Soit une colonne de sol de longueur L=LX, d'épaisseur E=1m et de hauteur H=10m. Cette colonne présente en  $X=L_d$  une discontinuité de type interface (interface non maillée qui est introduite dans le modèle par l'intermédiaire des *level-sets* grâce à l'opérateur DEFI\_FISS\_XFEM). Le barreau est entièrement traversé par la discontinuité (au niveau de l'approximation des champs de déplacement et de pression de pore du massif, on ne prend en compte que l'enrichissement **Heaviside**).

Manuel de validation

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Date : 23/07/2015 Page : 3/19 Clé : V7.31.144 Révision : 13612

La température au sein de la colonne est uniforme quelque soit l'instant t. La colonne est de plus entièrement saturée par un fluide (de l'eau par exemple) et les effets des forces de pesanteur ne sont pas pris en compte.

Afin d'avoir une solution unidimensionnelle (selon la direction z du repère d'espace) le coefficient de Poisson est pris nul.

Sur la Figure1.2-1 est représentée la géométrie de la colonne de sol.



Figure 1.2-1: Géométrie du problème 3D

### 1.3 **Propriétés du matériau**

Les paramètres donnés dans le Tableau 1.3-1, correspondent aux paramètres utilisés pour la modélisation dans le cas couplé hydromécanique. La loi de couplage utilisée est 'LIQU\_SATU'.

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Version

| Liquide (eau)            | Viscosité $\mu_w(en Pa.s)$ :                                          | 10-3  |
|--------------------------|-----------------------------------------------------------------------|-------|
|                          | Module de compressibilité                                             |       |
|                          | $\frac{1}{K_w}(en Pa^{-1}) :$                                         | 0     |
|                          | Densité du liquide $\rho_w(en kg/m^3)$ :                              | 1000  |
|                          | Perméabilité relative au fluide $k_{ m lq}^{ m rel}ig(S_{ m lq}ig)$ : | 1     |
| Paramètres<br>élastiques | Module de Young drainé $E(enMPa)$ :                                   | 10    |
|                          | Coefficient de Poisson $ \nu$ :                                       | 0     |
| Paramètres de            | Coefficient de Biot $b$ :                                             | 1     |
| couplage                 | Masse volumique homogénéisée initiale $r_0(en kg/m^3)$ :              | 2800  |
|                          | Perméabilité intrinsèque $K^{\text{int}}(en m^2/s)$ :                 | 10 -8 |

Tableau 1.3-1 : Propriétés du matériau

La porosité du matériau est prise égale à  $\varphi = 0.5$ .

### **1.4** Conditions aux limites, conditions initiales et chargements

#### 1.4.1 Conditions aux limites cas 2D

Les déplacements sont bloqués sur les faces [AD] et [BC] dans la direction horizontale, et sur la face inférieure [AB] aussi bien dans la direction verticale qu'horizontale. Sur l'interface, les déplacements horizontaux sont bloqués.

La pression de pore au sommet de la colonne est nulle quelque soit l'instant considéré, c'est-à-dire p(H,t)=0.0.

#### 1.4.2 Conditions aux limites cas 3D

Les déplacements sont bloqués sur la face [ABFE]. Les déplacements selon (0x) sont bloqués sur les faces [EADH], [FBCG] ainsi que sur l'interface. Les déplacements selon (Oy) sont bloqués sur les faces [ABCD] et [EFGH].

La pression de pore au sommet de la colonne est nulle quel que soit l'instant considéré, c'est-à-dire p(H,t)=0.0.

Manuel de validation

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Date : 23/07/2015 Page : 5/19 Clé : V7.31.144 Révision : 13612

#### 1.4.3 Chargements et conditions initiales

Afin de partir d'un chargement différent de part et d'autre de la fracture, on cherche à créer initialement dans la colonne une discontinuité du champ de pression sur le toit de la colonne. Ainsi pour la partie de la colonne située à gauche, la charge imposée est  $F_{g} = -1.0 Pa$  et pour la partie de la colonne située à droite, la charge imposée est  $F_{p} = -1.54 Pa$ .

Les conditions initiales en pression pour l'équilibre hydraulique s'écrivent donc :

• 
$$p^{G}(y, 0) = -\frac{F_{G}}{b} = 1.0 Pa$$
  
•  $p^{D}(y, 0) = -\frac{F_{D}}{b} = 1.54 Pa$ 

Les conditions aux limites sont résumées sur la Figure 1.4.3-1 :



La fracture est indiquée en rouge sur la Figure 1.4.3-1. Aucune condition aux limites n'est appliquée sur cette interface.

#### 1.4.4 Remarque sur la modélisation utilisée

Compte tenu de la discontinuité du champ de pression au sommet de la colonne [V7.30.100], on remarque que :

$$\begin{pmatrix} p(y,0) = -\frac{F_0}{b} & si \ y < H \\ p(y,0) = 0 & si \ y = H \end{pmatrix}$$

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[…] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 6/19 Clé : V7.31.144 Révision : 13612

Version

default

Cette particularité de la solution confère une instabilité au niveau de la résolution numérique (apparition d'oscillations) du problème couplé en haut de la colonne. Cela est lié au nom respect de la condition LBB [V7.30.100].

En effet dans le cas classique, la modélisation de type D\_PLAN\_HMD est utilisée pour y parvenir. Or en HM-XFEM seule l'extension de la modélisation D\_PLAN\_HM a été effectuée. Les résultats (pour le cas HM-XFEM) obtenus en haut de la colonne sont donc à prendre avec précaution. On observe en effet que les résultats obtenus avec le modèle HM-XFEM sont moins précis en haut de la colonne, surtout pour des temps petits. Mais ces résultats sont similaires à ceux obtenus avec la modélisation de type D\_PLAN\_HM dans le cas classique.

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Date : 23/07/2015 Page : 7/19 Clé : V7.31.144 Révision : 13612

Version

default

## 2 Solution de référence

### 2.1 Méthode de calcul

Il s'agit d'une solution analytique. Ce test permettant de valider la discontinuité de la pression du massif, nous nous focaliserons uniquement sur la résolution théorique de l'équation de conservation de la masse :

$$\frac{b^2}{E_0} \frac{\partial p_{lq}(y,t)}{\partial t} - \left( \frac{K^{\text{int}} k_{lq}^{\text{rel}}}{\mu_{lq}} \frac{\partial^2 p_{lq}(y,t)}{\partial y^2} \right) = 0$$

L'équation différentielle ci-dessus étant homogène, à coefficients constants, on utilise la méthode de résolution par variables séparables (voir annexe 1 pour la résolution de cette équation).

Compte tenu des conditions initiales et aux limites considérées au paragraphe 4 l'expression de la pression de pore pour la colonne de gauche s'exprime par :

$$P^{G}(y,t) = \frac{-4F_{G}}{\pi b} \sum_{m=1}^{+\infty} \frac{(-1)^{m-1}}{2m-1} e^{-\lambda E \pi^{2}(2m-1)^{2} \frac{t}{4b^{2}H^{2}}} \cos\left(\frac{\pi y(2m-1)}{2H}\right)$$

et l'expression de la pression de pore pour la colonne de droite s'exprime par :

$$P^{D}(y,t) = \frac{-4F_{D}}{\pi b} \sum_{m=1}^{+\infty} \frac{(-1)^{m-1}}{2m-1} e^{-\lambda E \pi^{2} (2m-1)^{2} \frac{t}{4b^{2} H^{2}}} \cos\left(\frac{\pi y (2m-1)}{2H}\right)$$

### 2.2 Grandeurs et résultats de référence

On teste la pression de pore PRE1 et la contrainte SIYY à différentes hauteurs dans la colonne et à différents instants.

#### 2.3 Incertitudes sur la solution

Aucune la solution est analytique.

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 8/19 Clé : V7.31.144 Révision : 13612

## 3 Modélisation A

### 3.1 Caractéristiques de la modélisation A

Les caractéristiques sont identiques à la solution de référence. La modélisation utilisée est de type D\_PLAN\_HM. Le maillage est représenté sur la Figure 3.1-1. Dans cette modélisation, LX=4m et  $L_d=2m$ , la discontinuité est ainsi conforme au maillage.



Figure 3.1-1 maillage 2D modélisation A

### 3.2 Grandeurs testées et résultats

Dans la colonne de gauche, on teste la pression de pore PRE1et la contrainte SIYY à l'instant final t=250s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation D\_PLAN\_HM classique mais légèrement moins précis que ceux obtenus avec une modélisation D\_PLAN\_HMD classique dans le haut de la colonne.

| Valeur testée    | Hauteur<br>(m) | Instant (s) | Туре       | Référence      |
|------------------|----------------|-------------|------------|----------------|
| Déplacement PRE1 | 8.75           | 0.          | ANALYTIQUE | 1.0            |
| Déplacement PRE1 | 9.375          | 0.          | ANALYTIQUE | 1.0            |
| Déplacement PRE1 | 0.0            | 250.        | ANALYTIQUE | 0.68544576689  |
| Déplacement PRE1 | 0.625          | 250.        | ANALYTIQUE | 0.682208147164 |
| Déplacement PRE1 | 1.25           | 250.        | ANALYTIQUE | 0.67252104433  |
| Déplacement PRE1 | 1.875          | 250.        | ANALYTIQUE | 0.656461946263 |
| Déplacement PRE1 | 2.5            | 250.        | ANALYTIQUE | 0.634160686593 |
| Déplacement PRE1 | 3.125          | 250.        | ANALYTIQUE | 0.605800331394 |
| Déplacement PRE1 | 3.75           | 250.        | ANALYTIQUE | 0.571618145927 |
| Déplacement PRE1 | 4.375          | 250.        | ANALYTIQUE | 0.531906397249 |
| Déplacement PRE1 | 5.0            | 250.        | ANALYTIQUE | 0.487012719208 |
| Déplacement PRE1 | 5.625          | 250.        | ANALYTIQUE | 0.437339762565 |
| Déplacement PRE1 | 6.25           | 250.        | ANALYTIQUE | 0.38334387542  |

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO

#### Date : 23/07/2015 Page : 9/19 Clé : V7.31.144 Révision : 13612

| Déplacement PRE1   | 6.875 | 250. | ANALYTIQUE     | 0.32553260623   |
|--------------------|-------|------|----------------|-----------------|
| Déplacement PRE1   | 7.5   | 250. | ANALYTIQUE     | 0.264460889851  |
| Déplacement PRE1   | 8.125 | 250. | ANALYTIQUE     | 0.200725860656  |
| Déplacement PRE1   | 8.75  | 250. | ANALYTIQUE     | 0.134960328921  |
| Déplacement PRE1   | 9.375 | 250. | ANALYTIQUE     | 0.0678250497631 |
| Déplacement PRE1   | 10.0  | 250. | ANALYTIQUE     | 0.00            |
| Contrainte SIYY    | 8.75  | 0.00 | ANALYTIQUE     | 0.00            |
| Contrainte SIYY    | 0.0   | 250. | ANALYTIQUE     | -0.31455423311  |
| Contrainte SIYY    | 0.625 | 250. | ANALYTIQUE     | -0.317791852836 |
| Contrainte SIYY    | 1.25  | 250. | ANALYTIQUE     | -0.32747895567  |
| Contrainte SIYY    | 1.875 | 250. | ANALYTIQUE     | -0.343538053737 |
| Contrainte SIYY    | 2.5   | 250. | ANALYTIQUE     | -0.365839313407 |
| Contrainte SIYY    | 3.125 | 250. | ANALYTIQUE     | -0.394199668606 |
| Contrainte SIYY    | 3.75  | 250. | ANALYTIQUE     | -0.428381854073 |
| Contrainte SIYY    | 4.375 | 250. | ANALYTIQUE     | -0.468093602751 |
| Contrainte SIYY    | 5.0   | 250. | ANALYTIQUE     | -0.512987280792 |
| Contrainte SIYY    | 5.625 | 250. | ANALYTIQUE     | -0.562660237435 |
| Contrainte SIYY    | 6.25  | 250. | ANALYTIQUE     | -0.61665612458  |
| Contrainte SIYY    | 6.875 | 250. | ANALYTIQUE     | -0.67446739377  |
| Contrainte SIYY    | 7.5   | 250. | ANALYTIQUE     | -0.735539110149 |
| Contrainte SIYY    | 8.125 | 250. | ANALYTIQUE     | -0.799274139344 |
| Contrainte SIYY    | 8.75  | 250. | ANALYTIQUE     | -0.865039671079 |
| Contrainte SIYY    | 9.375 | 250. | ANALYTIQUE     | -0.932174950237 |
| Contrainte SIYY    | 10,0  | 250. | ANALYTIQUE     | -1,0            |
| Contrainte VMIS    | 10,0  | 250. | NON_REGRESSION | 1.0             |
| Contrainte VMIS_SG | 10,0  | 250. | NON_REGRESSION | -1.0            |
| Contrainte PRIN_1  | 10,0  | 250. | NON_REGRESSION | -1.0            |
| Contrainte PRIN_2  | 10,0  | 250. | NON_REGRESSION | 0,00            |
| Contrainte PRIN_3  | 10,0  | 250. | NON_REGRESSION | 0.00            |
| Contrainte TRESCA  | 10,0  | 250. | NON_REGRESSION | 1.0             |

Les résultats obtenus pour la pression de pore à l'instant final t=250s sont représentés sur la Figure 3.2-1. On observe bien une discontinuité nette de la pression de pore de part et d'autre de la fissure. Les QUAD8 centraux sont subdivisés en sous TRIA HM\_XFEM.



#### Figure 3.2-1 Pression de pore à l'instant t=250s

Dans la colonne de droite, on teste la pression de pore PRE1et la contrainte SIYY à l'instant final t=250s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 10/19 Clé : V7.31.144 Révision : 13612

pour une modélisation <code>D\_PLAN\_HM</code> classique mais légèrement moins précis que ceux obtenus avec une modélisation <code>D\_PLAN\_HMD</code> classique dans le haut de la colonne.

| Valeur testée      | r testée Hauteur Instant (s) Type |      | Référence      |              |
|--------------------|-----------------------------------|------|----------------|--------------|
|                    | (m)                               |      |                |              |
| Déplacement PRE1   | 8.75                              | 0.   | ANALYTIQUE     | 1.54         |
| Déplacement PRE1   | 9.375                             | 0.   | ANALYTIQUE     | 1.54         |
| Déplacement PRE1   | 0.0                               | 250. | ANALYTIQUE     | 1.055586481  |
| Déplacement PRE1   | 0.625                             | 250. | ANALYTIQUE     | 1.050600547  |
| Déplacement PRE1   | 1.25                              | 250. | ANALYTIQUE     | 1.035682408  |
| Déplacement PRE1   | 1.875                             | 250. | ANALYTIQUE     | 1.010951397  |
| Déplacement PRE1   | 2.5                               | 250. | ANALYTIQUE     | 0.9766074572 |
| Déplacement PRE1   | 3.125                             | 250. | ANALYTIQUE     | 0.9329325102 |
| Déplacement PRE1   | 3.75                              | 250. | ANALYTIQUE     | 0.8802919447 |
| Déplacement PRE1   | 4.375                             | 250. | ANALYTIQUE     | 0.8191358517 |
| Déplacement PRE1   | 5.0                               | 250. | ANALYTIQUE     | 0.7499995876 |
| Déplacement PRE1   | 5.625                             | 250. | ANALYTIQUE     | 0.6735032343 |
| Déplacement PRE1   | 6.25                              | 250. | ANALYTIQUE     | 0.5903495681 |
| Déplacement PRE1   | 6.875                             | 250. | ANALYTIQUE     | 0.5013202135 |
| Déplacement PRE1   | 7.5                               | 250. | ANALYTIQUE     | 0.4072697703 |
| Déplacement PRE1   | 8.125                             | 250. | ANALYTIQUE     | 0.3091178253 |
| Déplacement PRE1   | 8.75                              | 250. | ANALYTIQUE     | 0.207838906  |
| Déplacement PRE1   | 9.375                             | 250. | ANALYTIQUE     | 0.104450576  |
| Déplacement PRE1   | 10.0                              | 250. | ANALYTIQUE     | 0.00         |
| Contrainte SIYY    | 8.75                              | 0.00 | ANALYTIQUE     | 0.00         |
| Contrainte SIYY    | 0.0                               | 250. | ANALYTIQUE     | -0.484413519 |
| Contrainte SIYY    | 0.625                             | 250. | ANALYTIQUE     | -0.489399453 |
| Contrainte SIYY    | 1.25                              | 250. | ANALYTIQUE     | -0.504317591 |
| Contrainte SIYY    | 1.875                             | 250. | ANALYTIQUE     | -0.529048602 |
| Contrainte SIYY    | 2.5                               | 250. | ANALYTIQUE     | -0.563392542 |
| Contrainte SIYY    | 3.125                             | 250. | ANALYTIQUE     | -0.607067489 |
| Contrainte SIYY    | 3.75                              | 250. | ANALYTIQUE     | -0.659708055 |
| Contrainte SIYY    | 4.375                             | 250. | ANALYTIQUE     | -0.720864148 |
| Contrainte SIYY    | 5.0                               | 250. | ANALYTIQUE     | -0.790000412 |
| Contrainte SIYY    | 5.625                             | 250. | ANALYTIQUE     | -0.866496765 |
| Contrainte SIYY    | 6.25                              | 250. | ANALYTIQUE     | -0.949650431 |
| Contrainte SIYY    | 6.875                             | 250. | ANALYTIQUE     | -1.038679786 |
| Contrainte SIYY    | 7.5                               | 250. | ANALYTIQUE     | -1.13273023  |
| Contrainte SIYY    | 8.125                             | 250. | ANALYTIQUE     | -1.230882175 |
| Contrainte SIYY    | 8.75                              | 250. | ANALYTIQUE     | -1.332161093 |
| Contrainte SIYY    | 9.375                             | 250. | ANALYTIQUE     | -1.435549423 |
| Contrainte SIYY    | 10,0                              | 250. | ANALYTIQUE     | -1,54        |
| Contrainte VMIS    | 10,0                              | 250. | NON REGRESSION | 1.54         |
| Contrainte VMIS SG | 10,0                              | 250. | NON REGRESSION | -1.54        |
| Contrainte PRIN 1  | 10,0                              | 250. | NON_REGRESSION | -1.54        |
| Contrainte PRIN 2  | 10,0                              | 250. | NON_REGRESSION | 0,00         |
| Contrainte PRIN 3  | 10,0                              | 250. | NON REGRESSION | 0.00         |
| Contrainte TRESCA  | 10,0                              | 250. | NON REGRESSION | 1.54         |

Version default

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[…] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 11/19 Clé : V7.31.144 Révision : 13612

## 4 Modélisation B

### 4.1 Caractéristiques de la modélisation B

Les caractéristiques sont identiques à la solution de référence. La modélisation utilisée est de type  $D_PLAN_HM$ . Le maillage est représenté sur la Figure 4.1-1. Dans cette modélisation, LX=5m et  $L_d=2,6m$ , la discontinuité est ainsi non conforme au maillage, elle traverse des QUAD8.





### 4.2 Grandeurs testées et résultats

Dans la colonne de gauche, on teste la pression de pore PRE1et la contrainte SIYY à l'instant final t=250s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation D\_PLAN\_HM classique mais légèrement moins précis que ceux obtenus avec une modélisation D\_PLAN\_HMD classique dans le haut de la colonne.

| Valeur testée    | Hauteur<br>(m) | Instant (s) | Туре       | Référence      |
|------------------|----------------|-------------|------------|----------------|
| Déplacement PRE1 | 8.75           | 0.          | ANALYTIQUE | 1.0            |
| Déplacement PRE1 | 9.375          | 0.          | ANALYTIQUE | 1.0            |
| Déplacement PRE1 | 0.0            | 250.        | ANALYTIQUE | 0.68544576689  |
| Déplacement PRE1 | 0.625          | 250.        | ANALYTIQUE | 0.682208147164 |
| Déplacement PRE1 | 1.25           | 250.        | ANALYTIQUE | 0.67252104433  |
| Déplacement PRE1 | 1.875          | 250.        | ANALYTIQUE | 0.656461946263 |
| Déplacement PRE1 | 2.5            | 250.        | ANALYTIQUE | 0.634160686593 |
| Déplacement PRE1 | 3.125          | 250.        | ANALYTIQUE | 0.605800331394 |
| Déplacement PRE1 | 3.75           | 250.        | ANALYTIQUE | 0.571618145927 |
| Déplacement PRE1 | 4.375          | 250.        | ANALYTIQUE | 0.531906397249 |

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO

| Date : 23/07/2015 | Page : 12/19     |
|-------------------|------------------|
| Clé : V7.31.144   | Révision : 13612 |

Version

default

| Déplacement PRE1   | 5.0   | 250. | ANALYTIQUE     | 0.487012719208  |
|--------------------|-------|------|----------------|-----------------|
| Déplacement PRE1   | 5.625 | 250. | ANALYTIQUE     | 0.437339762565  |
| Déplacement PRE1   | 6.25  | 250. | ANALYTIQUE     | 0.38334387542   |
| Déplacement PRE1   | 6.875 | 250. | ANALYTIQUE     | 0.32553260623   |
| Déplacement PRE1   | 7.5   | 250. | ANALYTIQUE     | 0.264460889851  |
| Déplacement PRE1   | 8.125 | 250. | ANALYTIQUE     | 0.200725860656  |
| Déplacement PRE1   | 8.75  | 250. | ANALYTIQUE     | 0.134960328921  |
| Déplacement PRE1   | 9.375 | 250. | ANALYTIQUE     | 0.0678250497631 |
| Déplacement PRE1   | 10.0  | 250. | ANALYTIQUE     | 0.00            |
| Contrainte SIYY    | 8.75  | 0.00 | ANALYTIQUE     | 0.00            |
| Contrainte SIYY    | 0.0   | 250. | ANALYTIQUE     | -0.31455423311  |
| Contrainte SIYY    | 0.625 | 250. | ANALYTIQUE     | -0.317791852836 |
| Contrainte SIYY    | 1.25  | 250. | ANALYTIQUE     | -0.32747895567  |
| Contrainte SIYY    | 1.875 | 250. | ANALYTIQUE     | -0.343538053737 |
| Contrainte SIYY    | 2.5   | 250. | ANALYTIQUE     | -0.365839313407 |
| Contrainte SIYY    | 3.125 | 250. | ANALYTIQUE     | -0.394199668606 |
| Contrainte SIYY    | 3.75  | 250. | ANALYTIQUE     | -0.428381854073 |
| Contrainte SIYY    | 4.375 | 250. | ANALYTIQUE     | -0.468093602751 |
| Contrainte SIYY    | 5.0   | 250. | ANALYTIQUE     | -0.512987280792 |
| Contrainte SIYY    | 5.625 | 250. | ANALYTIQUE     | -0.562660237435 |
| Contrainte SIYY    | 6.25  | 250. | ANALYTIQUE     | -0.61665612458  |
| Contrainte SIYY    | 6.875 | 250. | ANALYTIQUE     | -0.67446739377  |
| Contrainte SIYY    | 7.5   | 250. | ANALYTIQUE     | -0.735539110149 |
| Contrainte SIYY    | 8.125 | 250. | ANALYTIQUE     | -0.799274139344 |
| Contrainte SIYY    | 8.75  | 250. | ANALYTIQUE     | -0.865039671079 |
| Contrainte SIYY    | 9.375 | 250. | ANALYTIQUE     | -0.932174950237 |
| Contrainte SIYY    | 10,0  | 250. | ANALYTIQUE     | -1,0            |
| Contrainte VMIS    | 10,0  | 250. | NON_REGRESSION | 1.0             |
| Contrainte VMIS_SG | 10,0  | 250. | NON_REGRESSION | -1.0            |
| Contrainte PRIN_1  | 10,0  | 250. | NON_REGRESSION | -1.0            |
| Contrainte PRIN_2  | 10,0  | 250. | NON_REGRESSION | 0,00            |
| Contrainte PRIN 3  | 10,0  | 250. | NON_REGRESSION | 0.00            |
| Contrainte TRESCA  | 10,0  | 250. | NON_REGRESSION | 1.0             |

Les résultats obtenus pour la pression de pore à l'instant final t=250s sont représentés sur la Figure 4.2-1. On observe bien une discontinuité nette de la pression de pore de part et d'autre de la fissure. Les QUAD8 centraux sont subdivisés en sous TRIA6 HM XFEM.



Figure 4.2-1 Pression de pore à l'instant t=250s

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO Date : 23/07/2015 Page : 13/19 Clé : V7.31.144 Révision : 13612

Dans la colonne de droite, on teste la pression de pore PRE1et la contrainte SIYY à l'instant final t=250s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation D\_PLAN\_HM classique mais légèrement moins précis que ceux obtenus avec une modélisation D\_PLAN\_HMD classique dans le haut de la colonne.

| Valeur testée      | Hauteur | Instant (s) | Туре           | Référence    |
|--------------------|---------|-------------|----------------|--------------|
|                    | (m)     |             |                |              |
| Déplacement PRE1   | 8.75    | 0.          | ANALYTIQUE     | 1.54         |
| Déplacement PRE1   | 9.375   | 0.          | ANALYTIQUE     | 1.54         |
| Déplacement PRE1   | 0.0     | 250.        | ANALYTIQUE     | 1.055586481  |
| Déplacement PRE1   | 0.625   | 250.        | ANALYTIQUE     | 1.050600547  |
| Déplacement PRE1   | 1.25    | 250.        | ANALYTIQUE     | 1.035682408  |
| Déplacement PRE1   | 1.875   | 250.        | ANALYTIQUE     | 1.010951397  |
| Déplacement PRE1   | 2.5     | 250.        | ANALYTIQUE     | 0.9766074572 |
| Déplacement PRE1   | 3.125   | 250.        | ANALYTIQUE     | 0.9329325102 |
| Déplacement PRE1   | 3.75    | 250.        | ANALYTIQUE     | 0.8802919447 |
| Déplacement PRE1   | 4.375   | 250.        | ANALYTIQUE     | 0.8191358517 |
| Déplacement PRE1   | 5.0     | 250.        | ANALYTIQUE     | 0.7499995876 |
| Déplacement PRE1   | 5.625   | 250.        | ANALYTIQUE     | 0.6735032343 |
| Déplacement PRE1   | 6.25    | 250.        | ANALYTIQUE     | 0.5903495681 |
| Déplacement PRE1   | 6.875   | 250.        | ANALYTIQUE     | 0.5013202135 |
| Déplacement PRE1   | 7.5     | 250.        | ANALYTIQUE     | 0.4072697703 |
| Déplacement PRE1   | 8.125   | 250.        | ANALYTIQUE     | 0.3091178253 |
| Déplacement PRE1   | 8.75    | 250.        | ANALYTIQUE     | 0.207838906  |
| Déplacement PRE1   | 9.375   | 250.        | ANALYTIQUE     | 0.104450576  |
| Déplacement PRE1   | 10.0    | 250.        | ANALYTIQUE     | 0.00         |
| Contrainte SIYY    | 8.75    | 0.00        | ANALYTIQUE     | 0.00         |
| Contrainte SIYY    | 0.0     | 250.        | ANALYTIQUE     | -0.484413519 |
| Contrainte SIYY    | 0.625   | 250.        | ANALYTIQUE     | -0.489399453 |
| Contrainte SIYY    | 1.25    | 250.        | ANALYTIQUE     | -0.504317591 |
| Contrainte SIYY    | 1.875   | 250.        | ANALYTIQUE     | -0.529048602 |
| Contrainte SIYY    | 2.5     | 250.        | ANALYTIQUE     | -0.563392542 |
| Contrainte SIYY    | 3.125   | 250.        | ANALYTIQUE     | -0.607067489 |
| Contrainte SIYY    | 3.75    | 250.        | ANALYTIQUE     | -0.659708055 |
| Contrainte SIYY    | 4.375   | 250.        | ANALYTIQUE     | -0.720864148 |
| Contrainte SIYY    | 5.0     | 250.        | ANALYTIQUE     | -0.790000412 |
| Contrainte SIYY    | 5.625   | 250.        | ANALYTIQUE     | -0.866496765 |
| Contrainte SIYY    | 6.25    | 250.        | ANALYTIQUE     | -0.949650431 |
| Contrainte SIYY    | 6.875   | 250.        | ANALYTIQUE     | -1.038679786 |
| Contrainte SIYY    | 7.5     | 250.        | ANALYTIQUE     | -1.13273023  |
| Contrainte SIYY    | 8.125   | 250.        | ANALYTIQUE     | -1.230882175 |
| Contrainte SIYY    | 8.75    | 250.        | ANALYTIQUE     | -1.332161093 |
| Contrainte SIYY    | 9.375   | 250.        | ANALYTIQUE     | -1.435549423 |
| Contrainte SIYY    | 10,0    | 250.        | ANALYTIQUE     | -1,54        |
| Contrainte VMIS    | 10,0    | 250.        | NON_REGRESSION | 1.54         |
| Contrainte VMIS SG | 10,0    | 250.        | NON_REGRESSION | -1.54        |
| Contrainte PRIN_1  | 10,0    | 250.        | NON_REGRESSION | -1.54        |
| Contrainte PRIN 2  | 10,0    | 250.        | NON_REGRESSION | 0,00         |
| Contrainte PRIN 3  | 10,0    | 250.        | NON_REGRESSION | 0.00         |
| Contrainte TRESCA  | 10,0    | 250.        | NON_REGRESSION | 1.54         |

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 14/19 Clé : V7.31.144 Révision : 13612

## 5 Modélisation C

### 5.1 Caractéristiques de la modélisation C

Les caractéristiques sont identiques à la solution de référence. La modélisation utilisée est de type  $3D_{HM}$ . Le maillage est représenté sur la Figure 5.1-1, il est constitué de 64 HEXA20. Dans cette modélisation, LX=4m et  $L_d=2m$ , la discontinuité est ainsi conforme au maillage.



Figure 5.1-1 maillage 3D modélisation C

### 5.2 Grandeurs testées et résultats

Dans la colonne de gauche, on teste la pression de pore PRE1 à l'instant t=0,0001s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation  $3D_{HM}$  classique mais légèrement moins précis que ceux obtenus avec une modélisation  $3D_{HMD}$  classique dans le haut de la colonne.

| Valeur testée    | Hauteur (m) | Instant (s) | Туре       | Référence |
|------------------|-------------|-------------|------------|-----------|
| Déplacement PRE1 | 0,0         | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 0,625       | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 1,25        | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 1,875       | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 2,5         | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 3,125       | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 3,75        | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 4,375       | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 5,0         | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 5,625       | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 6.25        | 0.0001      | ANALYTIQUE | 1.0       |

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO* 

Date : 23/07/2015 Page : 15/19 Clé : V7.31.144 Révision : 13612

Version

default

| Déplacement PRE1 | 6,875 | 0.0001 | ANALYTIQUE | 1,0 |
|------------------|-------|--------|------------|-----|
| Déplacement PRE1 | 7,5   | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 8,125 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 8,75  | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 9,375 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 10,0  | 0.0001 | ANALYTIQUE | 0,0 |

Les résultats obtenus pour la pression de pore à l'instant final t=0.0001s sont représentés sur la Figure 5.2-1. On observe bien une discontinuité nette de la pression de pore de part et d'autre de la fissure. Les HEXA20 centraux sont subdivisés en sous TETRA HM XFEM.



#### Figure 5.2-1 Pression de pore à l'instant t=0.001s

Dans la colonne de droite, on teste la pression de pore PRE1 à l'instant t=0,0001s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation  $3D_{HM}$  classique mais légèrement moins précis que ceux obtenus avec une modélisation  $3D_{HMD}$  classique dans le haut de la colonne.

| Valeur testée    | Hauteur (m) | Instant (s) | Туре       | Référence |
|------------------|-------------|-------------|------------|-----------|
| Déplacement PRE1 | 0,0         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 0,625       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 1,25        | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 1,875       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 2,5         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 3,125       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 3,75        | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 4,375       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 5,0         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 5,625       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 6,25        | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 6,875       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 7,5         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 8,125       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 8,75        | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 9,375       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 10,0        | 0.0001      | ANALYTIQUE | 0,0       |

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 16/19 Clé : V7.31.144 Révision : 13612

## 6 Modélisation D

### 6.1 Caractéristiques de la modélisation D

Les caractéristiques sont identiques à la solution de référence. La modélisation utilisée est de type  $3D_{HM}$ . Le maillage est représenté sur la Figure 6.1-1, il est constitué de 80 HEXA20. Dans cette modélisation, LX=5m et  $L_d=2,6m$ , la discontinuité est ainsi non conforme au maillage. Les HEXA20 centraux sont traversés par la fissure.



Figure 6.1-1 maillage 3D modélisation D

### 6.2 Grandeurs testées et résultats

Dans la colonne de gauche, on teste la pression de pore PRE1 à l'instant t=0,0001 s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation  $3D_{HM}$  classique mais légèrement moins précis que ceux obtenus avec une modélisation  $3D_{HMD}$  classique dans le haut de la colonne.

| Valeur testée    | Hauteur (m) | Instant (s) | Туре       | Référence |
|------------------|-------------|-------------|------------|-----------|
| Déplacement PRE1 | 0,0         | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 0,625       | 0.0001      | ANALYTIQUE | 1,0       |
| Déplacement PRE1 | 1,25        | 0.0001      | ANALYTIQUE | 1,0       |

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[…] Responsable : Daniele COLOMBO*  Version

default

| Déplacement PRE1 | 1,875 | 0.0001 | ANALYTIQUE | 1,0 |
|------------------|-------|--------|------------|-----|
| Déplacement PRE1 | 2,5   | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 3,125 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 3,75  | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 4,375 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 5,0   | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 5,625 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 6,25  | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 6,875 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 7,5   | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 8,125 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 8,75  | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 9,375 | 0.0001 | ANALYTIQUE | 1,0 |
| Déplacement PRE1 | 10,0  | 0.0001 | ANALYTIQUE | 0,0 |

Les résultats obtenus pour la pression de pore à l'instant final t=0.0001s sont représentés sur la Figure 6.2-1. On observe bien une discontinuité nette de la pression de pore de part et d'autre de la fissure. Les HEXA20 centraux sont subdivisés en sous TETRA HM XFEM.



#### Figure 6.2-1 Pression de pore à l'instant t=0.001s

Dans la colonne de droite, on teste la pression de pore PRE1 à l'instant t=0,0001 s à différentes hauteurs dans la colonne. Les résultats obtenus sont similaires à ceux obtenus pour une modélisation  $3D_{HM}$  classique mais légèrement moins précis que ceux obtenus avec une modélisation  $3D_{HMD}$  classique dans le haut de la colonne.

| Valeur testée    | Hauteur (m) | Instant (s) | Туре       | Référence |
|------------------|-------------|-------------|------------|-----------|
| Déplacement PRE1 | 0,0         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 0,625       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 1,25        | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 1,875       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 2,5         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 3,125       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 3,75        | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 4,375       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 5,0         | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 5,625       | 0.0001      | ANALYTIQUE | 1,54      |
| Déplacement PRE1 | 6,25        | 0.0001      | ANALYTIQUE | 1,54      |

Manuel de validation

Fascicule v7.31 : Thermo-hydro-mécanique en milieu poreux saturé

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[...] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 18/19 Clé : V7.31.144 Révision : 13612

| Déplacement PRE1 | 6,875 | 0.0001 | ANALYTIQUE | 1,54 |
|------------------|-------|--------|------------|------|
| Déplacement PRE1 | 7,5   | 0.0001 | ANALYTIQUE | 1,54 |
| Déplacement PRE1 | 8,125 | 0.0001 | ANALYTIQUE | 1,54 |
| Déplacement PRE1 | 8,75  | 0.0001 | ANALYTIQUE | 1,54 |
| Déplacement PRE1 | 9,375 | 0.0001 | ANALYTIQUE | 1,54 |
| Déplacement PRE1 | 10,0  | 0.0001 | ANALYTIQUE | 0,0  |

Version default

*Titre : WTNV144 - Consolidation d'une colonne de sol poro-[…] Responsable : Daniele COLOMBO*  Date : 23/07/2015 Page : 19/19 Clé : V7.31.144 Révision : 13612

## 7 Conclusion

Pour chacune des deux modélisations, les résultats concordent avec la solution analytique ainsi qu'avec les résultats obtenus avec une modélisation HM classique pour chaque côté de l'interface. Le degré de liberté de pression enrichi HPRE1 est correctement introduit et le comportement hydromécanique des éléments HM-XFEM coïncide avec celui des éléments HM classiques.