

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 1/14 Clé : V7.30.100 Révision : 12326

WTNL100 - Consolidation d'une colonne de sol poro-élastique saturé (Terzaghi)

Résumé :

Ce cas-test porte sur la consolidation d'une colonne de sol poro-élastique saturé, étanche latéralement et à la base, soumise à un échelon de force en tête. L'objectif est de tester les déplacements (de tassement du sol), les pressions et comparer l'ensemble des résultats avec une solution analytique, dont les grandes lignes sont présentées.

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 2/14 Clé : V7.30.100 Révision : 12326

1 Problème de référence

1.1 Géométrie

Ce cas-test unidimensionnel est issu de la littérature et possède une solution analytique [1]. Il est inspiré du problème de consolidation d'un sol poreux saturé d'eau à température ambiante (problème de Terzaghi). L'eau est supposée incompressible ($1/K_{lq}=0,0$). La température est uniforme. L'action de la pesanteur est dans le cas présent négligée. Le problème couplé poro-mécanique saturé est décrit par les variables de déplacements u_y (tassement du sol) et de pression de fluide P_{lq} (la charge hydraulique étant P_{lq}/ρ_{eau}). Afin d'obtenir une solution purement uni-dimensionnelle, le coefficient de Poisson est choisi égal à $v_0=0,0$. Les dimensions sont les suivantes: L=1,00m, H=10,00m.

Module de Young drainé: $E_0 = 10 MPa$	Perméabilité intrinsèque : $K_{intr} = 10 \mathrm{x} 10^{-8}$
Coefficient de Poisson: $v_0 = 0,0$	Masse volumique du fluide : $\rho_{lq} = 1000 \ kg/m^3$
Masse volumique : $r_0 = 2800 \ kg/m^3$	Porosité : $\phi^0=0,5$
Coefficient de Biot : $b=1,0$	Viscosité dynamique de l'eau : $\mu_{lq}(T) = 1$
Saturation $S_{lq}(p_c) = 1,0$	Perméabilité relative au fluide : $k_{lq}^{rel}(S_{lq}) = 1$

Les caractéristiques de comportement et de couplage thermique ne sont pas significatives.

La perméabilité hydraulique du milieu à l'eau est alors : $\lambda_{lq}^{H} = \frac{K_{intr}(\varphi) \cdot k_{lq}^{rel}(S_{lq})}{\mu_{lq}(T)}$ en ($m^3 s/kg$). En mécanique des sols, il est souvent noté la perméabilité par $k = \lambda_{lq}^{H} \rho_{lq} g$, soit ici: $k \approx 10^{-14} m/s$. Le coefficient de consolidation $c_v = \lambda_{lq}^{H} E_0/b^2$ vaut ici: $c_v = 0, 1 m^2/s$.

1.2 Conditions aux limites et chargements

1.2.1 Conditions aux limites

La pression de fluide interstitiel reste nulle sur toute la face supérieure CD: $P_{lq}=0$. Les faces latérales ont des déplacements bloqués en x. La face inférieure AB a des déplacements bloqués en x et en y, et elle est étanche: $P_{lq,y}=0$

1.2.2 Conditions initiales

La colonne est initialement au repos dans un état vierge : $P_{lq}=0$, $\sigma_{vv}=0$.

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES

Date : 13/06/2014 Page : 3/14 Clé : V7.30.100 Révision : 12326

1.2.3 Chargement

Il est exercé un échelon de pression $F_0 = -1,0 Pa$ sur la face supérieure CD à t = 0s. La pesanteur est ici négligée.

2 Solution de référence

Les contraintes totales poro-élastiques sont : $\sigma = E_0 \varepsilon(u) - bP_{lq}$. Seule la composante verticale est présente : $\sigma_{yy}(y,t) = E_0 u_{y,y}(y,t) - bP_{lq}(y,t)$.

L'équilibre hydro-mécanique poro-élastique 1D s'écrit donc, en l'absence de force de pesanteur, pour $t \ge 0$:

$$E_0 u_{y,yy}(y,t) - bP_{lq,y}(y,t) = 0$$
, équilibre mécanique
 $\lambda_{lq}^H P_{lq,yy}(y,t) - b\dot{u}_{y,y}(y,t) = 0$, équilibre hydraulique

avec les conditions initiales : $u_y(y,0)=0$, $P_{lq}(y,0)=0$ et les conditions aux limites pour t>0 : $u_y(0,t)=0$, $P_{lq}(0,t)=0$, $\sigma_{yy}(H,t)=F_0\eta(t)=E_0u_{y,y}(H,t)-bP_{lq}(H,t)$ où $\eta(t)$ est la fonction échelon en t=0 (Heaviside).

L'équilibre mécanique donne directement l'uniformité des contraintes totales pour t>0 sur |0,H|, d'où : $\sigma_{yy}(y,t) = F_0 = E_0 u_{y,y}(y,t) - bP_{lq}(y,t)$, soit $u_{y,y}(y,t) = \frac{1}{E_0}(F_0 + bP_{lq}(y,t))$, pour t>0 sur |0,H|.

L'équilibre hydraulique conduit alors à :

$$\frac{b^2}{E_0} \dot{P}_{lq}(y,t) - \lambda_{lq}^H P_{lq,yy}(y,t) = 0 \text{, pour } t > 0 \text{ sur } |0,H|$$

avec comme conditions initiales $P_{lq}(y,0) = -\frac{F_0}{b} \operatorname{sur} |0,H|$, et deux conditions aux limites $P_{lq}(H,t) = 0$ et $P_{lq,y}(0,t) = 0$ pour t > 0, c'est-à-dire un problème du type choc thermique sur |0,H|.

Le coefficient de consolidation $c_v = \lambda_{lq}^H E_0 / b^2$ vaut ici : $c_v = 0, 1 m^2 / s$. Il pilote la durée du processus de consolidation.

Il en découle ainsi un temps caractéristique $\tau_c = H^2 / c_v$ (=1000s ici) servant à identifier le pas de la discrétisation temporelle pour la méthode numérique d'intégration. A cette valeur τ_c , il a été atteint un peu plus de 90% de la consolidation.

La solution est, cf. [2] :

$$P_{lq}(y,t) = \frac{-4F_0}{\pi b} \sum_{m=1,2,3..}^{+\infty} \frac{(-1)^{m-1}}{2m-1} e^{-\lambda_{lq}^{H} E_0 \pi^2 (2m-1)^2 \frac{t}{(4b^2 H^2)}} .\cos(\frac{\pi y (2m-1)}{2H})$$

et: $u_y(y,t) = \frac{F_0 y}{E_0} + \frac{b}{E_0} \int_0^y P_{lq}(\xi,t) d\xi$

soit:
$$u_{y}(y,t) = \frac{F_{0}y}{E_{0}} - \frac{8HF_{0}}{\pi^{2}E_{0}} \sum_{m=1,2,3...}^{+\infty} \frac{(-1)^{m-1}}{(2m-1)^{2}} e^{-\lambda_{lq}^{H}E_{0}\pi^{2}(2m-1)^{2}\frac{t}{(4b^{2}H^{2})}} \cdot \sin(\frac{\pi y(2m-1)}{2H})$$

Manuel de validation

Fascicule v7.30 : Thermo-hydro-mécanique en milieu poreux de structures linéiques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Version default

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[…] Responsable : Roméo FERNANDES

Date : 13/06/2014 Page : 4/14 Clé : V7.30.100 Révision : 12326

Les contraintes effectives (agissant sur le squelette) sont : $\sigma_{yy}^{e\!f\!f}(y,t) = E_0 u_{y,y}(y,t)$. Pour des instants $t \to \infty$, nous obtenons : $P_{lq}(0,\infty) = 0$ et $u_y(H,\infty) = \frac{F_0 H}{E_r}$ (soit ici $-10^{-6} m$).

2.1 Incertitudes sur la solution

La solution de référence est analytique.

2.2 Influence du choix de la modélisation

Dans ce paragraphe, on souhaite attirer l'attention sur une difficulté de modélisation numérique liée à ce type de test (colonne de Terzaghi). Dans ce qui suit on discute donc de l'influence de la modélisation retenue et on s'appuie notamment sur des calculs réalisés avec le code Lagamine (Université de Liège) qui dispose d'éléments différents de ceux de Code_Aster. Pour cette raison, le test présenté dans ce paragraphe provient d'une étude externe et n'est pas quantitativement exactement le même que celui étudié dans le reste du document. Il ne donne donc pas les mêmes solutions de références. Ce paragraphe constitue donc un complément donné à titre informatif.

A l'instant t=0, la <u>solution est discontinue</u> à la surface libre y=H:

$$\begin{cases} \frac{P_{lq}(y,0)}{F_0} = 1 \quad \forall y < H\\ P_{lq}(H,0) = 0 \end{cases}$$

A cause de cette discontinuité, ce test est un cas d'école mettant en évidence les phénomènes d'oscillations numériques de la pression hydraulique liés à l'utilisation d'une formulation mixte par la méthode des éléments finis. Ces oscillations se produisent généralement au voisinage d'une paroi drainante, et sont dues à : • la violation de la condition inf-sup ;

• choix d'un pas de temps trop petit, violant le principe du maximum [R3.06.07] ;

Le choix du type d'éléments finis a une influence considérable sur la solution obtenue au voisinage de la surface libre, autour de t=0. Dans Code_Aster, la <u>modélisation sélective</u> (HMS) permet d'éliminer ces oscillations (**Figure 2.2-a**), contrairement à la modélisation classique (HM).

Cependant, l'obtention de la <u>solution exacte pour la pression hydraulique</u> $P_{lq}(y,0)$ par la modélisation HMS se traduit par une approximation plus grande (par rapport à la modélisation HM, voir le cas du maillage fin de la **Figure 2.2-b**) pour la <u>solution en déplacement vertical</u> $u_y(y,0)$. Cette approximation est d'autant plus grande que le maillage est plus grossier autour de la surface libre.

Enfin, on remarque que le déplacement calculé par le code Lagamine (Université de Liège) est parfaitement exacte et indépendant de la finesse du maillage, mais avec en contrepartie une solution en pression hydraulique très oscillante [HT66-05-012-A]. Cela est du au type d'éléments finis utilisé par Lagamine qui sont différents des nôtres puisqu'il s'agit d'un P2P2 avec une quadrature 9PG/9PG. Cet élément ne vérifie pas la condition inf-sup et ne peut donc donner une solution correcte en pression hydraulique.

2.3 Références bibliographiques

1.L.MEIROVITCH : Analytical methods in vibrations. McMillan Ed., 1967.

2.J.J.MARIGO, E.PLANCHAIS: Introduction aux méthodes asymptotiques. Application à des problèmes thermiques linéaires. Note EDF/DER/IMA/MMN HI-70/7563, 31/08/1992.

Version default

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 5/14 Clé : V7.30.100 Révision : 12326

Figure 2.2-a: Comparaison des solutions en contraintes effectives verticales (SIYY) et en pression hydraulique (SIP) obtenues au premier pas de calcul au voisinage de la surface libre (suivant une coupe verticale) pour différentes finesses de maillage et pour les modélisations sélective (HMS) et classique (HM) dans le cas du maillage « fin ». Comparaison avec les solutions analytiques à t=0.

Figure 2.2-b: Comparaison du déplacement vertical de la surface libre en fonction du temps obtenu pour 3 maillages différents et Lagamine pour le maillage « fin ». Comparaison des modélisations classique (HM) et sélective (HMS) de Code_Aster pour le maillage « fin ». La solution analytique du problème est également représentée.

Manuel de validation

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES

3 Modélisation A

3.1 Caractéristiques de la modélisation

Les caractéristiques sont identiques à la solution de référence.

3.2 Grandeurs testées et résultats

Valeur testée	Noeud	Instant (s)	Туре	Référence
Déplacement PRE1	No29	0.	ANALYTIQUE	1.0
Déplacement PRE1	No31	0.	ANALYTIQUE	1.0
Déplacement PRE1	No1	250.	ANALYTIQUE	0.68544576689
Déplacement PRE1	No3	250.	ANALYTIQUE	0.682208147164
Déplacement PRE1	No5	250.	ANALYTIQUE	0.67252104433
Déplacement PRE1	No7	250.	ANALYTIQUE	0.656461946263
Déplacement PRE1	No9	250.	ANALYTIQUE	0.634160686593
Déplacement PRE1	No11	250.	ANALYTIQUE	0.605800331394
Déplacement PRE1	No13	250.	ANALYTIQUE	0.571618145927
Déplacement PRE1	No15	250.	ANALYTIQUE	0.531906397249
Déplacement PRE1	No17	250.	ANALYTIQUE	0.487012719208
Déplacement PRE1	No19	250.	ANALYTIQUE	0.437339762565
Déplacement PRE1	No21	250.	ANALYTIQUE	0.38334387542
Déplacement PRE1	No23	250.	ANALYTIQUE	0.32553260623
Déplacement PRE1	No25	250.	ANALYTIQUE	0.264460889851
Déplacement PRE1	No27	250.	ANALYTIQUE	0.200725860656
Déplacement PRE1	No29	250.	ANALYTIQUE	0.134960328921
Déplacement PRE1	No31	250.	ANALYTIQUE	0.0678250497631
Déplacement PRE1	No33	250.	ANALYTIQUE	0.00
Contrainte SIYY	No48	0.00	ANALYTIQUE	0.00
Contrainte SIYY	No34	250.	ANALYTIQUE	-0.31455423311
Contrainte SIYY	No35	250.	ANALYTIQUE	-0.317791852836
Contrainte SIYY	No36	250.	ANALYTIQUE	-0.32747895567
Contrainte SIYY	No37	250.	ANALYTIQUE	-0.343538053737
Contrainte SIYY	No38	250.	ANALYTIQUE	-0.365839313407
Contrainte SIYY	No39	250.	ANALYTIQUE	-0.394199668606
Contrainte SIYY	No40	250.	ANALYTIQUE	-0.428381854073
Contrainte SIYY	No41	250.	ANALYTIQUE	-0.468093602751
Contrainte SIYY	No42	250.	ANALYTIQUE	-0.512987280792
Contrainte SIYY	No43	250.	ANALYTIQUE	-0.562660237435
Contrainte SIYY	No44	250.	ANALYTIQUE	-0.61665612458
Contrainte SIYY	No45	250.	ANALYTIQUE	-0.67446739377
Contrainte SIYY	No46	250.	ANALYTIQUE	-0.735539110149
Contrainte SIYY	No47	250.	ANALYTIQUE	-0.799274139344
Contrainte SIYY	No48	250.	ANALYTIQUE	-0.865039671079
Contrainte SIYY	No49	250.	ANALYTIQUE	-0.932174950237
Contrainte SIYY	No50	250.	ANALYTIQUE	-1,0
Contrainte VMIS	No50	250.	NON-REGRESSION	1.0
Contrainte VMIS_SG	No50	250.	NON-REGRESSION	-1.0
Contrainte PRIN_1	No50	250.	NON-REGRESSION	-1.0
Contrainte PRIN_2	No50	250.	NON-REGRESSION	0,00
Contrainte PRIN_3	No50	250.	NON-REGRESSION	0.00
Contrainte TRESCA	No50	250.	NON-REGRESSION	1.0

Les valeurs de référence en NON REGRESSION sont obtenue pour la version 10.01.21.

Version default

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES

Révision : 12326

Clé : V7.30.100

4 Modélisation B

4.1 Caractéristiques de la modélisation

La modélisation est généralisée dans le cas de la 3D.

4.2 Grandeurs testées et résultats

Valeur testée	Noeud	Instant (s)	Туре	Référence
Déplacement PRE1	No168	0.	ANALYTIQUE	1,0
Déplacement PRE1	No170	0.	ANALYTIQUE	1,0
Déplacement PRE1	No172	0.	ANALYTIQUE	1,0
Déplacement PRE1	No174	0.	ANALYTIQUE	1,0
Déplacement PRE1	No176	0.	ANALYTIQUE	1,0
Déplacement PRE1	No178	0.	ANALYTIQUE	1,0
Déplacement PRE1	No180	0.	ANALYTIQUE	1,0
Déplacement PRE1	No182	0.	ANALYTIQUE	1,0
Déplacement PRE1	No184	0.	ANALYTIQUE	1,0
Déplacement PRE1	No186	0.	ANALYTIQUE	1,0
Déplacement PRE1	No188	0.	ANALYTIQUE	1,0
Déplacement PRE1	No190	0.	ANALYTIQUE	1,0
Déplacement PRE1	No192	0.	ANALYTIQUE	1,0
Déplacement PRE1	No194	0.	ANALYTIQUE	1,0
Déplacement PRE1	No196	0.	ANALYTIQUE	1,0
Déplacement PRE1	No198	0.	ANALYTIQUE	1,0
Déplacement PRE1	No200	0.	ANALYTIQUE	0,0
Contrainte VMIS	No83	0.	NON-REGRESSION	1.64519502
Contrainte VMIS_SG	No83	0.	NON-REGRESSION	1.8098495947
Contrainte PRIN 1	No83	0.	NON-REGRESSION	-1,4049
Contrainte PRIN 2	No83	0.	NON-REGRESSION	0,0
Contrainte PRIN_3	No83	0.	NON-REGRESSION	0,4049
Contrainte TRESCA	No83	0.	NON-REGRESSION	-0,1645

Les valeurs de référence en NON_REGRESSION sont obtenue pour la version 10.01.21.

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 8/14 Clé : V7.30.100 Révision : 12326

5 Modélisation C

5.1 Caractéristiques de la modélisation

La modélisation est identique à la modélisation A.

5.2 Grandeurs testées et résultats

Valeur testée	Noeud	Instant (s)	Туре	Référence
Déplacement PRE1	No29	0.	ANALYTIQUE	1.0
Déplacement PRE1	No31	0.	ANALYTIQUE	1.0
Déplacement PRE1	No1	250.	ANALYTIQUE	0.68544576689
Déplacement PRE1	No3	250.	ANALYTIQUE	0.682208147164
Déplacement PRE1	No5	250.	ANALYTIQUE	0.67252104433
Déplacement PRE1	No7	250.	ANALYTIQUE	0.656461946263
Déplacement PRE1	No9	250.	ANALYTIQUE	0.634160686593
Déplacement PRE1	No11	250.	ANALYTIQUE	0.605800331394
Déplacement PRE1	No13	250.	ANALYTIQUE	0.571618145927
Déplacement PRE1	No15	250.	ANALYTIQUE	0.531906397249
Déplacement PRE1	No17	250.	ANALYTIQUE	0.487012719208
Déplacement PRE1	No19	250.	ANALYTIQUE	0.437339762565
Déplacement PRE1	No21	250.	ANALYTIQUE	0.38334387542
Déplacement PRE1	No23	250.	ANALYTIQUE	0.32553260623
Déplacement PRE1	No25	250.	ANALYTIQUE	0.264460889851
Déplacement PRE1	No27	250.	ANALYTIQUE	0.200725860656
Déplacement PRE1	No29	250.	ANALYTIQUE	0.134960328921
Déplacement PRE1	No31	250.	ANALYTIQUE	0.0678250497631
Déplacement PRE1	No33	250.	ANALYTIQUE	0.00
Contrainte SIYY	No48	0.00	ANALYTIQUE	0.00
Contrainte SIYY	No34	250.	ANALYTIQUE	-0.31455423311
Contrainte SIYY	No35	250.	ANALYTIQUE	-0.317791852836
Contrainte SIYY	No36	250.	ANALYTIQUE	-0.32747895567
Contrainte SIYY	No37	250.	ANALYTIQUE	-0.343538053737
Contrainte SIYY	No38	250.	ANALYTIQUE	-0.365839313407
Contrainte SIYY	No39	250.	ANALYTIQUE	-0.394199668606
Contrainte SIYY	No40	250.	ANALYTIQUE	-0.428381854073
Contrainte SIYY	No41	250.	ANALYTIQUE	-0.468093602751
Contrainte SIYY	No42	250.	ANALYTIQUE	-0.512987280792
Contrainte SIYY	No43	250.	ANALYTIQUE	-0.562660237435
Contrainte SIYY	No44	250.	ANALYTIQUE	-0.61665612458
Contrainte SIYY	No45	250.	ANALYTIQUE	-0.67446739377
Contrainte SIYY	No46	250.	ANALYTIQUE	-0.735539110149
Contrainte SIYY	No47	250.	ANALYTIQUE	-0.799274139344
Contrainte SIYY	No48	250.	ANALYTIQUE	-0.865039671079
Contrainte SIYY	No49	250.	ANALYTIQUE	-0.932174950237
Contrainte SIYY	No50	250.	ANALYTIQUE	-1,0
Contrainte VMIS	No50	250.	NON-REGRESSION	0.4915089111
Contrainte VMIS_SG	No50	250.	NON-REGRESSION	-0.4915089111
Contrainte PRIN 1	No50	250.	NON-REGRESSION	-0.4915089111
Contrainte PRIN 2	No50	250.	NON-REGRESSION	-1.826682526E-17
Contrainte PRIN_3	No50	250.	NON-REGRESSION	1.60461944E-17
Contrainte TRESCA	No50	250.	NON-REGRESSION	0.4915089111

Les valeurs de référence en NON_REGRESSION sont obtenue pour la version 10.01.21.

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES

Date : 13/06/2014 Page : 9/14 Clé : V7.30.100 Révision : 12326

6 Modélisation D

6.1 Caractéristiques de la modélisation

La modélisation est identique à la modélisation B.

6.2 Grandeurs testées et résultats

Valeur testée	Noeud	Instant (s)	Туре	Référence
Déplacement PRE1	No168	0.	ANALYTIQUE	1,0
Déplacement PRE1	No170	0.	ANALYTIQUE	1,0
Déplacement PRE1	No172	0.	ANALYTIQUE	1,0
Déplacement PRE1	No174	0.	ANALYTIQUE	1,0
Déplacement PRE1	No176	0.	ANALYTIQUE	1,0
Déplacement PRE1	No178	0.	ANALYTIQUE	1,0
Déplacement PRE1	No180	0.	ANALYTIQUE	1,0
Déplacement PRE1	No182	0.	ANALYTIQUE	1,0
Déplacement PRE1	No184	0.	ANALYTIQUE	1,0
Déplacement PRE1	No186	0.	ANALYTIQUE	1,0
Déplacement PRE1	No188	0.	ANALYTIQUE	1,0
Déplacement PRE1	No190	0.	ANALYTIQUE	1,0
Déplacement PRE1	No192	0.	ANALYTIQUE	1,0
Déplacement PRE1	No194	0.	ANALYTIQUE	1,0
Déplacement PRE1	No196	0.	ANALYTIQUE	1,0
Déplacement PRE1	No198	0.	ANALYTIQUE	1,0
Déplacement PRE1	No200	0.	ANALYTIQUE	0,0
Contrainte VMIS	No83	0.	NON-REGRESSION	0.375001823900
Contrainte VMIS SG	No83	0.	NON-REGRESSION	-0.375001823900
Contrainte PRIN_1	No83	0.	NON-REGRESSION	-0.375001823900
Contrainte PRIN_2	No83	0.	NON-REGRESSION	0.0
Contrainte PRIN 3	No83	0.	NON-REGRESSION	0.0
Contrainte TRESCA	No83	0.	NON-REGRESSION	-0.375001823900

Les valeurs de référence en NON_REGRESSION sont obtenue pour la version 10.01.21.

Version default

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 10/14 Clé : V7.30.100 Révision : 12326

7 Modélisation E

7.1 Caractéristiques de la modélisation

La modélisation est identique à la modélisation C mais avec une adaptation successive du maillage via ${\tt MACR_ADAP_MAIL}.$

7.2 Grandeurs testées et résultats

Valeur testée	Numéro d'ordre	Туре	Référence 9.02.13
ESTERG1 composante du	25	NON-REGRESSION	5.1838946544447E-03
champ ERRE_NOEU_ELEM			
ERRE TPS GLOB	25	NON-REGRESSION	0.0902526795091860

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES

Date : 13/06/2014 Page : 11/14 Clé : V7.30.100 Révision : 12326

8 Modélisation F

8.1 Caractéristiques de la modélisation

La modélisation est identique à la modélisation E mais sans l'indicateur d'erreur en temps.

8.2 Grandeurs testées et résultats

Valeur testée Numéro d'ordre		Туре	Référence 9.02.13
ESTERG1 composante du	25	NON-REGRESSION	5.1838946544447E-03
champ ERRE_NOEU_ELEM			

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES

9 Modélisation G

9.1 Caractéristiques de la modélisation

Les caractéristiques sont identiques à la modélisation A. Le maillage est composé de 83 noeuds et de 16 QUAD8.

9.2 Grandeurs testées et résultats

Valeur testée	Noeud	Instant (s)	Туре	Référence
Déplacement PRE1	No29	1.E-4	AUTRE_ASTER	1.0
Déplacement PRE1	No31	1.E-4	AUTRE_ASTER	1.0
Déplacement PRE1	No1	250.	AUTRE_ASTER	0.68544576689
Déplacement PRE1	No3	250.	AUTRE_ASTER	0.682208147164
Déplacement PRE1	No5	250.	AUTRE_ASTER	0.67252104433
Déplacement PRE1	No7	250.	AUTRE_ASTER	0.656461946263
Déplacement PRE1	No9	250.	AUTRE_ASTER	0.634160686593
Déplacement PRE1	No11	250.	AUTRE_ASTER	0.605800331394
Déplacement PRE1	No13	250.	AUTRE_ASTER	0.571618145927
Déplacement PRE1	No15	250.	AUTRE_ASTER	0.531906397249
Déplacement PRE1	No17	250.	AUTRE_ASTER	0.487012719208
Déplacement PRE1	No19	250.	AUTRE_ASTER	0.437339762565
Déplacement PRE1	No21	250.	AUTRE_ASTER	0.38334387542
Déplacement PRE1	No23	250.	AUTRE_ASTER	0.32553260623
Déplacement PRE1	No25	250.	AUTRE_ASTER	0.264460889851
Déplacement PRE1	No27	250.	AUTRE_ASTER	0.200725860656
Déplacement PRE1	No29	250.	AUTRE_ASTER	0.134960328921
Déplacement PRE1	No31	250.	AUTRE_ASTER	0.0678250497631
Déplacement PRE1	No33	250.	AUTRE_ASTER	0.00

Les valeurs de pression testées sont comparées avec les valeurs de pression obtenues avec la modélisation A. Les différences observées entre les deux modélisations sont inférieures à 6.E-3%.

Version default

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 13/14 Clé : V7.30.100 Révision : 12326

10 Modélisation H

10.1 Caractéristiques de la modélisation

La modélisation est identique à la modélisation E mais avec la modélisation sous-intégrée ${\tt D_PLAN_HM_SI}.$

10.2 Grandeurs testées et résultats

Valeur testée Numéro d'ordre		Туре	Référence 11.3.7
ESTERG1 composante du	25	NON-REGRESSION	5.2034169568591E-03
champ ERRE NOEU ELEM			
ERRE TPS GLOB	25	NON-REGRESSION	0.095460688688661

Titre : WTNL100 - Consolidation d'une colonne de sol poro-[...] Responsable : Roméo FERNANDES Date : 13/06/2014 Page : 14/14 Clé : V7.30.100 Révision : 12326

11 Synthèse des résultats

En conclusion, les résultats Code_Aster sont en accord avec les solutions de référence analytiques.