

Version default

Titre: FORMA41 - Travaux pratiques de la formation « Géni[...]

Responsable: Sylvie MICHEL-PONNELLE

Date 07/07/2015

Clé: V7.22.137 Révision

Révision 13148

: Page : 1/11

FORMA41 - Travaux pratiques de la formation « Génie Civil » : prise en compte des retraits dans l'étude d'une poutre en flexion 3 points

Résumé:

Ce test 3D permet d'illustrer sur un cas simple les questions relatives à la modélisation des retraits dans le béton ; il met en évidence l'effet du séchage et de la température sur la répartition des contraintes.

Il s'agit d'une poutre en béton armée soumise à une flexion 3 points à laquelle on ajoute une sollicitation thermique et de séchage.

L'objectif du test est de montrer les possibilités de modélisation des retraits par chaînage de calculs thermique THER NON LINE et mécanique MECA STATIQUE.

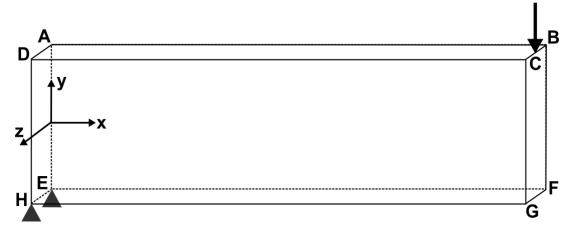
La modélisation A correspond au calcul de la flexion en élasticité. Il sert de comparaison pour les autres modélisations.

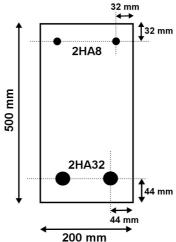
La modélisation B correspond au calcul avec prise en compte du retrait de dessiccation, du retrait endogène et de la dilatation thermique.

Date 07/07/2015

Clé : V7.22.137 Révision

Révision 13148


: Page : 2/11


Responsable : Sylvie MICHEL-PONNELLE

1 Problème de référence

1.1 Géométrie

Il s'agit d'une poutre armée de 5m de long dont on ne modélise qu'un quart grâce aux symétries. Les dimensions sont données en millimètres.

1.2 Condition initiale et chargements thermiques

La température initiale est uniforme à $20 \, ^{\circ} C$. Le béton est soumis à la thermo-hydratation.

La température est imposée à $20\,^{\circ}C\,$ sur la face $\it EFGH\,$.

La température est constante à $20\,^{\circ}C$ jusqu'à 10 jours puis varie linéairement de $20\,^{\circ}C$ à $40\,^{\circ}C$ entre 10 jours et 30 jours puis est constante à $40\,^{\circ}C$ sur la face ABCD.

1.3 Condition initiale et chargements de séchage

La concentration en eau initiale est uniforme à $120 l/m^3$.

La concentration en eau est imposée à $50 l/m^3$ sur la face EFGH . La concentration en eau est imposée à $70 l/m^3$ sur la face ABCD .

Date 07/07/2015

Clé: V7.22.137 Révision

13148

: Page : 3/11

1.4 Conditions aux limites et chargements mécaniques

Conditions de symétrie

Responsable: Sylvie MICHEL-PONNELLE

La plaque est bloquée suivant Ox sur la face BCGF et suivant Oz sur la face ABFE .

Condition limite

La plaque est bloquée suivant Oy sur le côté HE.

Elle est soumise à une force $\frac{F}{4}$ = 3840 N suivant Oy répartie sur le côté BC ce qui

équivaut à une force totale de $F = 15360 \, N$ sur la poutre entière. La force est appliquée à l'instant final de chaque calcul (en modélisation A au seul pas de temps effectué et en modélisation B à $t=100 \ jours$).

1.5 Propriétés thermiques des matériaux

Les caractéristiques du béton sont :

- Capacité thermique $\rho C_p = 2.4 e^6 J/m^3/°C$;
- •Conductivité $\lambda = 1 W/m/^{\circ}C$;

et les caractéristiques relatives au comportement hydratant suivantes :

- chaleur par degré d'hydratation : $Q_0 = 1.14e^8 J/m^3$
- affinité fonction de l'hydratation (évaluation polynomiale de la fonction connue par points) et de la température (nappe):

$$A(h,T) = (50.12h^{6} - 190.76h^{5} + 258.38h^{4} - 123.71h^{3} - 11.82h^{2} + 15.37h + 2.43)\exp\left(\frac{-QSR_{K}}{(273.15 + T)}\right)$$

• avec constante d'Arrhénius : $QSR_K = 4000 / °K$.

Remarque: La constante d'Arrhénius est toujours exprimée en degré Kelvin. Les températures sont exprimées en ${}^{\circ}C$.

1.6 Propriétés des matériaux du séchage

On utilise la loi de diffusion SECH GRANGER :

$$D(C,T) = A \cdot \exp(BC) \frac{T}{T_0} \exp\left[-\frac{Q_s}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

- $A = 3.3e 13 \, m^2 / s$;
- B = 0.05;
- QSR = 4000
- $T_0 = 293 \circ K = 20 \circ C$

1.7 Propriétés mécaniques des matériaux

Le comportement est élastique.

Les caractéristiques des aciers sont :

Module d'Young $E_a = 200000 MPa$;

Date 07/07/2015 : Page : 4/11

Responsable: Sylvie MICHEL-PONNELLE

Clé: V7.22.137 Révision

Révision 13148

• Coefficient de Poisson v=0.3;

Les caractéristiques du béton sont :

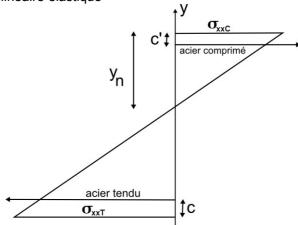
- •Module d'Young $E_b = 32\,000\,MPa$ pour la modélisation A. En modélisation B, il varie linéairement en fonction de la température de $E_b = 30\,000\,MPa$ pour $T = 0\,^{\circ}C$ à $E_b = 40\,000\,MPa$ pour $T = 100\,^{\circ}C$;
- •Coefficient de Poisson v=0.2 ;
- Dilatation thermique $\alpha = 1.2e 6$ à la température de référence de $T_{ref} = 20 \, ^{\circ} C$
- Coefficient de retrait de dessiccation $K_{\it des} = 8 {\rm e} {\rm -} 6$
- Coefficient de retrait endogène $B_{\it endo} = 9 {\rm e} 5$

Date 07/07/2015

: Page : 5/11

13148

Clé: V7.22.137 Révision


2 Solution de référence

Responsable: Sylvie MICHEL-PONNELLE

2.1 Solution élastique sans retrait

On se place sous les hypothèses suivantes:

- •les sections de la poutres restent planes
- •il y a adhérence parfaite entre le béton et l'acier
- •le comportement est linéaire élastique

On peut donc évaluer la position de l'axe neutre de la poutre y_n en fonction de la position des aciers. Pour cela, il faut résoudre l'équation suivante :

$$y_{n} \left(\frac{2n}{b} (A_{s} + A_{s}') + 2h \right) - \left(\frac{2n}{b} (A_{s}'c' + A_{s}(h - c)) + h^{2} \right) = 0$$
(1)

Avec:

 A_s et A_s : surfaces d'aciers respectivement tendus et comprimés dans la section

c' et c' : enrobage de béton respectivement en dessous des aciers tendus et au dessus des aciers comprimés

 $b \;\; {
m et} \;\; h$: respectivement la largeur et la hauteur de la section de la poutre

$$n = \frac{E_a}{E_b}$$
 : ratio entre les module d'Young du béton et de l'acier

La contrainte longitudinale de compression σ_{xxC} en fonction du moment fléchissant et de la position de l'axe neutre.

$$\sigma_{xxC} = \frac{Mf}{\left(A_{s} n \frac{(h-c-y_{n})^{2}}{y_{n}} + A_{s}' n \frac{(y_{n}-c')^{2}}{y_{n}} + \frac{by_{n}^{2}}{3} + b \frac{(h-y_{n})^{3}}{y_{n}}\right)}$$
(2)

$$Mf(x) = \frac{Fx}{2} \tag{3}$$

L'application numérique donne :

$$y_n = 0.2674$$
 (4)

Et en x=2.5 m et y=0.25 m, la contrainte de compression maximale vaut:

$$\sigma_{xxC} = -2.05 MPa \tag{5}$$

Date 07/07/2015

: Page : 6/11

Responsable: Sylvie MICHEL-PONNELLE

Clé: V7.22.137 Révision

13148

En utilisant la linéarité des contraintes dans la section, la contrainte de traction maximum en

$$\sigma_{xxT} = 1.78 MPa \tag{6}$$

2.2 Solution avec retraits

On peut facilement évaluer les déformations dues au retrait de dessiccation et à la dilatation thermique là où on connaît les valeurs de la concentration en eau et de la température. Pour le retrait endogène, on évalue le degré d'hydratation à partir de l'interpolation utilisée pour la définition des paramètres d'hydratation. On a:

•en
$$G \ a) \ t > 30j$$
:

$$T = 20 \, ^{\circ}C \, \text{ donc } \, \varepsilon_{th} = \alpha (T - T_{ref}) = 0 \\ C = 50 \, l/m^3 \, \text{ donc } \, \varepsilon_{sec} = -K_{des}(C_0 - C) = -5.6e - 4 \\ h = 0.95 \, \text{ donc } \, \varepsilon_{endo} = -B_{endo} \, h = -8.55e - 5$$

•en
$$G \ a) \ t > 30j$$
:

$$T = 40 \,^{\circ}C$$
 donc $\varepsilon_{th} = \alpha (T - T_{ref}) = 2.4 \mathrm{e} - 5$
 $C = 70 \, l/m^3$ donc $\varepsilon_{sec} = -K_{des}(C_0 - C) = -4 \mathrm{e} - 4$
 $h = 0.95$ donc $\varepsilon_{endo} = -B_{endo}h = -8.55 \mathrm{e} - 5$

Les contraintes en $\,G\,$ ne sont pas calculées analytiquement mais résultent d'un calcul sur un maillage très fin (32000 HEXA20 et 155369 nœuds).

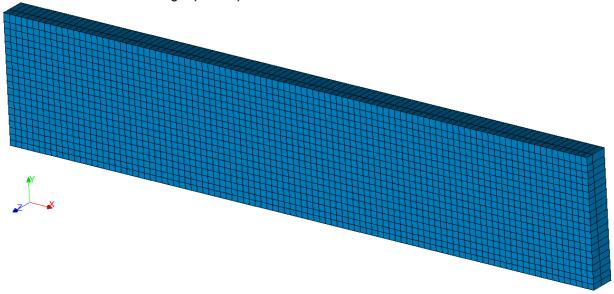
07/07/2015

Date

: Page : 7/11

Responsable : Sylvie MICHEL-PONNELLE

Clé: V7.22.137 Révision 13148


3 Modélisation A

3.1 Caractéristiques de la modélisation

Calcul élastique sur un modèle volumique (3D). Le chargement est défini dans le § 3.

3.2 Caractéristiques du maillage

On utilise un maillage qui comporte 4000 HEXA20 et 22965 nœuds.

3.3 Grandeurs testées et résultats

On teste la valeur de la contrainte longitudinale :

Composante		Type de référence	Valeur	Tolérance
SIGM_NOEU -	SIXX en G	ANALYTIQUE	1.78 <i>MPa</i>	2,00%
SIGM_NOEU-	SIXX en G	NON_REGRESSION	1.75388 <i>MPa</i>	0,1%

Version default

Titre: FORMA41 - Travaux pratiques de la formation « Géni[...]

Date 07/07/2015

: Page : 8/11

Responsable: Sylvie MICHEL-PONNELLE Clé: V7.22.137 Révision

13148

4 Modélisation B

4.1 Caractéristiques de la modélisation

On fait trois calculs successifs:

- Calcul thermique tel que décrit en 2 en modélisation 3D DIAG;
- Calcul de séchage tel que décrit en 2 sur le même modèle;
- Calcul élastique tel qu'en modélisation A.

4.2 Caractéristiques du maillage

On utilise le même maillage que la modélisation A qui comporte 4000 HEXA20 et 22965 nœuds pour le calcul élastique. Pour les calculs thermiques et de séchage, on utilise ce même maillage mais linéaire. Les aciers ne sont pas pris en compte pour les calculs thermique et de séchage.

4.3 Grandeurs testées et résultats

On teste la valeur des déformations de retraits de dessiccation et de dilatation :

Composante	Type de référence	Valeur	Tolérance
EPVC_ELNO $-$ EPTHER_L en C	ANALYTIQUE	2.4e-5	1%
EPVC_ELNO — EPTHER_L en $\it C$	NON_REGRESSION	2.4e-5	0.1%
EPVC_ELNO - EPSECH en ${\it C}$	ANALYTIQUE	-4e-4	1%
EPVC_ELNO — EPSECH en ${\it C}$	NON_REGRESSION	-4.e-4	0.1%
EPVC_ELNO — EPSECH en G	ANALYTIQUE	-5.6e-4	1%
EPVC_ELNO — EPSECH en G	NON_REGRESSION	-5.6e-4	0.1%
EPVC_ELNO — EPHYDR en C	ANALYTIQUE	-8.55e-5	4%
EPVC_ELNO — EPHYDR en C	NON_REGRESSION	-8.2825e-5	0.1%
EPVC_ELNO — EPHYDR en G	ANALYTIQUE	-8.55 e- 5	4%
EPVC ELNO – EPHYDR en G	NON_REGRESSION	-8.2825e-5	0.1%

On teste la valeur de la contrainte :

Composante	Type de référence	Valeur	Tolérance
SIGM_NOEU - $S\!I\!X\!X$ en G	AUTRE_ASTER	1.7447e8	1%
SIGM_NOEU - $SIXX$ en G	NON_REGRESSION	1.727481e8	0,1%

default

Titre: FORMA41 - Travaux pratiques de la formation « Géni[...]

07/07/2015

Date

Clé: V7.22.137 Révision

13148

: Page : 9/11

5 Mise en œuvre du TP

Responsable: Sylvie MICHEL-PONNELLE

5.1 Déroulement du TP

Il s'agit de mener à bien un calcul chaînant thermo-hydratation, séchage et mécanique. Ce TP permet de :

- •mettre en œuvre un calcul thermique et de séchage dans Code_Aster: gestion du chargement, des matériaux, du comportement et des paramètres de THER NON LINE ;
- comprendre et mettre en œuvre la notion de variable de commande ;
- •définir des paramètres d'une loi de comportement qui dépendent de variables de commandes;
- en ce qui concerne le test, le script Python générant la géométrie et le maillage dans Salomé se trouve dans le fichier datg associé au test.

5.2 Géométrie et maillage

La géométrie et le maillage sont directement générés par en lançant le script fourni.

5.3 Calcul élastique

Le calcul élastique correspondant à la modélisation A est exécuté,

Créer une étude Code_Aster dans Salomé_Méca utilisant le maillage généré et le fichier de commande de la modélisation A.

Ouvrir le fichier résultat .rmed dans Post-Pro ou dans Paravis et observer l'état de contrainte de la poutre

5.4 Ajout du calcul thermique

L'objectif est de modifier la modélisation A pour reproduire la modélisation B, c'est-à-dire d'ajouter les calculs thermique et de séchage.

Enregistrer le fichier de commande de la modélisation A sous un autre nom et l'ouvrir dans Eficas et le modifier comme suit :

Créer un nouveau maillage linéaire à partir du maillage quadratique initial avec CREA MAILLAGE.

Créer un modèle THERMIQUE utilisant la modélisation 3D DIAG.

Définir les paramètres thermiques DEFI MATERIAU et affecter le matériau aux mailles de béton .

Définir le chargement thermique sur les faces concernées dans AFFE CHAR THER F avec TEMP IMPO.

Définir une liste d'instants de 0 à 100 jours qui passe par 10 jours et 30 jours.

Utiliser THER NON LINE pour résoudre le problème de thermique en utilisant la relation THER HYDR

5.5 Ajout du calcul de séchage

Ajouter les paramètres de séchage dans DEFI MATERIAU avec SECH GRANGER.

Version default

Titre: FORMA41 - Travaux pratiques de la formation « Géni[...]

Date

07/07/2015

Responsable : Sylvie MICHEL-PONNELLE

Clé: V7.22.137 Révision

13148

: Page : 10/11

Définir le chargement de séchage sur les faces concernées dans AFFE_CHAR_THER_F avec TEMP IMPO.

Utiliser THER_NON_LINE pour résoudre le problème de séchage. Ne pas oublier d'indiquer le résultat de thermique précédent dans EVOL_THER_SECH.

5.6 Prise en compte des retraits

Créer une fonction de la température définissant le module d'Young.

Modifier les paramètres mécaniques dans <code>DEFI_MATERIAU</code> avec <code>ELAS_FO</code>. Ajouter le coefficient de dilatation et de retrait de dessiccation.

Utiliser PROJ_CHAM pour projeter les résultats de séchage et de thermique précédents, définit sur le maillage linéaire, sur le maillage quadratique.

Ajouter dans AFFE_MATERIAU les variables de commande température, hydratation et séchage associées aux résultats précédents projetés. Ne pas oublier de spécifier les valeurs de références.

Ajouter la liste d'instants et la fonction de chargement à la commande MECA_STATIQUE déjà présente. Supprimer le chargement de flexion et arrêter le calcul un pas avant la fin.

Ajouter une commande MECA_STATIQUE avec le chargement de flexion qui calcul le dernier instant.

Ajouter dans CALC_CHAM le calcul de l'option EPVC_ELNO qui calcule les déformations dues aux retraits.

5.7 Analyse des résultats

On pourra utiliser le module VISU ou PARAVIS de Salomé pour visualiser les champs de déplacements, de contraintes et de déformation.

On pourra par exemple visualiser les contraintes le long du segment BF et observer les contraintes de traction élevée s en peau dues au retrait de dessiccation.

Version default

Titre: FORMA41 - Travaux pratiques de la formation « Géni[...]

07/07/2015

Date

Clé : V7.22.137 Révision

13148

: Page : 11/11

Responsable : Sylvie MICHEL-PONNELLE

6 Synthèse des résultats

Ce test permet de montrer comment mener un calcul chaîné de thermique, séchage et mécanique sur du béton armé. On observe entre autre l'augmentation des contraintes en peau à cause du retrait de dessiccation.