

Titre : HSNA104 - Détensionnement de joints hétérogènes so[...] Responsable : Renaud BARGELLINI Version

HSNA104 – Détensionnement de joints hétérogènes soudés par friction

Résumé :

Ce cas-test correspond à une partie de l'étude décrite dans la note [bib1]. Il constitue une validation des modèles de comportement thermomécaniques tenant compte des transformations métallurgiques au refroidissement dans les aciers. Il s'agit de la simulation de la phase de refroidissement du détensionnement de joints bimétalliques Acier 16MND5 – Acier inoxydable 304L préalablement soudés par friction, afin de déterminer les contraintes résiduelles générées à la fin de ce refroidissement. Le calcul de thermique linéaire de la phase de refroidissement homogène est tout d'abord effectué, puis l'évolution métallurgique dans le 16MND5 est calculée (transformation de type ferritique). Après quoi la simulation du problème mécanique tenant compte des transformations de phases métallurgiques est effectuée en postulant au début de la phase de refroidissement un état de contraintes nul (parfaitement relaxé) dans la structure.

La modélisation mécanique est effectuée en tenant compte de la décarburation à l'interface 16MND5-304L et de la plasticité de transformation. Le comportement est élastoplastique avec écrouissage isotrope linéaire pour le 16MND5 (toutes les phases), et élastoplastique avec écrouissage isotrope non linéaire pour l'acier 304L.

Les résultats en contraintes résiduelles obtenues en peau externe sont comparés à des résultats de mesures effectuées par diffraction de rayon X [bib1].

Manuel de validation

Titre : HSNA104 - Détensionnement de joints hétérogènes so[...] Responsable : Renaud BARGELLINI Date : 04/08/2011 Page : 2/6 Clé : V7.20.104 Révision : 7050

Version

default

1 Problème de référence

1.1 Géométrie

Figure 1. : Géométrie des tubes

Dimension des tubes :

- Rayon intérieur : 50,075 mm
- Rayon extérieur : 59,5 mm
- Epaisseur : 9,425 mm
- Longueur totale 2L : 300 mm

1.2 Propriétés des matériaux

Les tubes soudés sont en acier 16MND5 d'un coté et en acier 304L de l'autre. Les propriétés mécaniques varient avec la température pour ces deux matériaux. Elles sont données, ainsi que les propriétés métallurgiques pour le 16MND5 dans la référence [bib1].

Une décarburation est observée à l'interface 16MND5-304L, ce qui se traduit expérimentalement par une chute de dureté Vickers de 250 HV à 2mm de l'interface, jusqu'à 130 HV sur l'interface.

1.3 Conditions aux limites et chargements

Calcul thermique : Refroidissement homogène continu de $875 \degree C$ à $20 \degree C$

Calcul métallurgique :

Transformation de l'austénite en ferrite dans le 16MND5 entre 758,5 °C et 650,5 °CPas de transformation dans l'inox.

Calcul mécanique :

- 1) Point PC bloqué dans la direction Z
- 2) Chargement en température

1.4 Conditions initiales

 $T(r,z)=875 \circ C$.

L'acier 16MND5 est entièrement austénitique à l'état initial soit : Zf = 0, Zp = 0, Zb = 0 et Zm = 0.

Manuel de validation

Titre : HSNA104 - Détensionnement de joints hétérogènes so[...] Responsable : Renaud BARGELLINI

Date : 04/08/2011 Page : 3/6 Clé : V7.20.104 Révision : 7050

Version

default

2 Solution de référence

Il n'existe pas de solution analytique. Cependant des résultats expérimentaux sont disponibles (mesures de contraintes résiduelles en peau externe par diffraction de rayons X [bib1]).

2.1 Références bibliographiques

[1] A. BEBEY-FOURCOT, F. WAECKEL, Note EDF DER HI-74/97/028/0. Simulation numérique de joints hétérogènes soudés par friction (19 janvier 1998).

Titre : HSNA104 - Détensionnement de joints hétérogènes so[...] Responsable : Renaud BARGELLINI Version

3 Modélisation A

3.1 Caractéristiques de la modélisation

Modélisation axisymétrique

Figure 4.1-a : Maillage global du tube

Figure 4.1-b : Maillage grossi de la jonction 16MND5-304L et détail de l'interface et de la zone décarburée

La densité élémentaire de nœuds à proximité de l'interface est de 0,2mm pour permettre une bonne représentation des pics de contraintes attendus à cet endroit.

3.2 Caractéristiques du maillage

Nombre de nœuds : 6513 Nombre de mailles et types : 2616 dont 1908 QUAD8, 204 TRIA6, 504 SEG3

3.3 Remarques

Ecrouissage isotrope linéaire pour l'acier 16MND5 (toute phase confondue) : la limite d'élasticité définie en fonction de la température est la limite d'élasticité à 0% de déformation plastique. La pente d'écrouissage linéaire (en fonction de la température) est la pente à 0,5% de déformation plastique.

Ecrouissage isotrope non linéaire pour l'acier 304L

- La chute de la dureté dans la zone décarburée est prise en compte dans la modélisation par une diminution de la limite d'élasticité de l'acier dans cette zone. Pour évaluer la diminution de la limite d'élasticité d'après les mesures de dureté, on postule que pour une même structure métallurgique, le rapport Rm/SY reste constant, et que la valeur de Rm vaut le tiers de la dureté mesurée [bib1].
- 26 pas de calcul de 0 à $154000 \ s$ (1 pas de $9000 \ s$; 4 pas de $36000 \ s$; 10 pas de $54000 \ s$; 7 pas de $118000 \ s$; 4 de $154000 \ s$).

Manuel de validation

Fascicule v7.20 : Thermo-mécanique statique non linéaire des structures axisymétriques

Titre : HSNA104 - Détensionnement de joints hétérogènes so[…] Responsable : Renaud BARGELLINI

Date : 04/08/2011 Page : 5/6 Clé : V7.20.104 Révision : 7050

3.4 Grandeurs testées et résultats

Noeud	Localisation	Type de valeur	Aster	Mesure	Ecart (%)
N674	Peau externe (X = 59,5mm) Y = + 44,515 mm	SIYY	64,245	60,23	6,7
N882	Peau externe (X = 59,5mm) Y = + 30,493 mm	SIYY	113,819	99,58	14,3
N1316	Peau externe (X = 59,5mm) Y = + 20 mm	SIYY	141,806	119,07	19,1
N1834	Peau externe (X = 59,5mm) Y = + 9,657 mm	SIYY	169,971	109,07	55,8
N2278	Peau externe(X = 59,5mm) Y = + 4,739 mm	SIYY	213,459	153,34	39,2
N2719	Peau externe (X = 59,5mm) Y = + 1,872 mm	SIYY	258,022	188,54	13,6
N3755	Peau externe (X = 59,5mm) Y = - 1,872 mm	SIYY	-230,442	-181,92	26,7
N4199	Peau externe (X = 59,5mm) Y = - 4,739 mm	SIYY	-209,876	-220,18	-4,7
N4525	Peau externe (X = 59,5mm) Y = - 9,657 mm	SIYY	-180,092	-174,06	3,5
N4742	Peau externe (X = 59,5mm) Y = - 20 mm	SIYY	-166,688	-190,52	-12,5
N5458	Peau externe (X = 59,5mm) Y = - 30,493 mm	SIYY	-140,201	-145,52	-3,7
N5759	Peau externe (X = 59,5mm) Y = - 44,515 mm	SIYY	-81,641	-87,00	-6,2

Noeud	Localisation	Type de valeur	Aster	Mesure	Ecart (%)		
N674	Peau externe (X = 59,5mm) Y = + 44,515 mm	SIZZ	30,937	40,35	-23,3		
N882	Peau externe (X = 59,5mm) Y = + 30,493 mm	SIZZ	23,686	61,39	-61,4		
N1316	Peau externe (X = 59,5mm) Y = + 20 mm	SIZZ	-9,541	48,03	-119,8		
N1834	Peau externe (X = 59,5mm) Y = + 9,657 mm	SIZZ	-70,264	7,78	-1003		
N2278	Peau externe(X = $59,5$ mm) Y = $+4,739$ mm	SIZZ	-104,430	-64,98	60,71		
N2719	Peau externe (X = 59,5mm) Y = + 1,872 mm	SIZZ	-75,962	-98,83	-23,1		
N3755	Peau externe (X = 59,5mm) Y = - 1,872 mm	SIZZ	15,857	29,26	-45,8		
N4199	Peau externe (X = 59,5mm) Y = - 4,739 mm	SIZZ	26,372	-26,56	-199,3		
N4525	Peau externe (X = 59,5mm) Y = - 9,657 mm	SIZZ	40,284	53,15	-24,2		
N4742	Peau externe (X = 59,5mm) Y = - 20 mm	SIZZ	9,290	39,47	-76,5		
N5458	Peau externe (X = 59,5mm) Y = - 30,493 mm	SIZZ	-23,355	-16,58	40,9		
N5759	Peau externe (X = 59,5mm) Y = - 44,515 mm	SIZZ	-34,912	-40,32	-13,4		
Synthèse des résultats							

<u>4 Synthèse des résultats</u>

Manuel de validation

Fascicule v7.20 : Thermo-mécanique statique non linéaire des structures axisymétriques

Copyright 2015 EDF R&D - Document diffusé sous licence GNU FDL (http://www.gnu.org/copyleft/fdl.html)

Code Aster

Version

Titre : HSNA104 - Détensionnement de joints hétérogènes so[...] Responsable : Renaud BARGELLINI

Date : 04/08/2011 Page : 6/6 Clé : V7.20.104 Révision : 7050

default

Les valeurs de contraintes calculées sont en bon accord avec les profils de contraintes mesurés, qui comportent eux même une incertitude assez élevée (cf. courbes ci-dessous).

Figure 4.1 : Profil des contraintes longitudinales calculées et mesurées en peau externe

