Date: 24/10/2012 Page: 1/9 Clé: V6.08.106 Responsable: Renaud BARGELLINI Révision: 9991

SSND106: Tractions rotations multiples en grandes déformations, écrouissage isotrope

Résumé:

Ce test modélise un point matériel soumis à quatre cycles traction-rotation de corps rigide de 45° , avec une loi de comportement élasto-plastique de Von Mises à écrouissage isotrope en grandes déformations (formulation hypoélastique GDEF HYPO ELAS, formulation avec déformation logarithmique GDEF LOG). On vérifie d'une part l'invariance de la contrainte équivalente de Von Mises durant les phases de rotation, et d'autre part ses valeurs durant les tractions en comparant à la modélisation de SIMO MIEHE.

Les modélisations A $\mathsf{et} \ B$ traitent le problème en déformations planes, soit en $\operatorname{3D}$ (A), soit en D PLAN (B).

Les modélisations C et D traitent le problème en contraintes planes, soit en 3D (C), soit en C PLAN (D).

Date: 24/10/2012 Page: 2/9 Responsable: Renaud BARGELLINI Clé: V6.08.106 Révision: 9991

Problème de référence

1.1 Géométrie

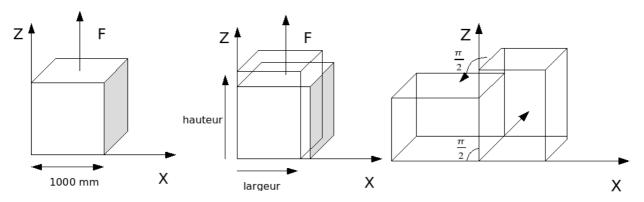


Figure 1 : Problème de référence (pour une rotation de 90°)

On considère un élément de matière cubique de $1000 \, mm$ de côté soumis alternativement à une force de traction puis à une rotation d'ensemble de $45\,^\circ\,$. Il subit en tout 4 cycles traction/rotation.

1.2 Données matériau

On considère ici la loi de comportement élasto-plastique à écrouissage isotrope de type von Mises : VMIS ISOT LINE. Le tableau ci-dessous liste les paramètres utilisés ; afin de renforcer la comparaison, les paramètres utilisés aboutissent à des lois de comportement identiques dans les 2 cas (écrouissage isotrope linéaire).

Module d'Young :	200 000 MPa
Coefficient de Poisson	0,3
Limite d'élasticité	200 MPa
Module d'écrouissage linéaire	2 000 MPa

1.3 Conditions aux limites et chargements

Dans la modélisation $\it A$, en $\it 3D$ on bloque les déplacements normaux des faces avant et arrière, afin de comparer les résultats à la modélisation B 2D (D PLAN). Dans la modélisation C , également en 3D on laisse libres les déplacements des faces avant et arrière, afin de comparer les résultats à la modélisation D2D (C PLAN).

Deux types de phases doivent être distingués : les phases de traction et les phases de rotation. Première phase de traction

Entité	Type charge	Valeur	
Face inférieure	FACE_IMPO	DNOR = 0	
Face supérieure	FACE_IMPO	DNOR=500mm	
Axe rotation	DDL_IMPO	DX = 0	
Face avant (3D)	FACE_IMPO	DNOR = 0	

Manuel de validation

Titre : SSND106 - Tractions rotations multiples en grandes[...]

Date : 24/10/2012 Page : 3/9

Responsable : Renaud BARGELLINI

Clé : V6.08.106 Révision : 9991

Face arrière (3D) FACE_IMPO DNOR = 0

Tractions suivantes :

Entité	Type charge	Valeur
Face inférieure	LIAISON_OBLIQUE	DZ = 0
Face supérieure	LIAISON_OBLIQUE	DZ = 200mm
Côté $X=0$; $Z=1$ mm	LIAISON_OBLIQUE	DX = 0
Axe rotation	DDL_IMPO	DX=0, DZ=0
Face avant (3D)	DDL_IMPO	DY = 0
Face arrière (3D)	DDL_IMPO	DY = 0

Phase de rotation :

Conditions aux limites

Entité	Type charge	Valeur
Axe rotation	DDL_IMPO	DX = 0, DZ = 0
Face avant (3D)	DDL_IMPO	DY = 0
Face arrière (3D)	DDL_IMPO	DY = 0 ou libre

Le chargement de rotation est imposé via une macro nommée $CHAR_ROTA$; on impose une rotation d'ensemble de 45° par phase, découpée en 5 incréments de 9°.

2 Résultats de référence

Les résultats de référence sont obtenus en réalisant le même calcul avec le modèle de grandes déformations de Simo-Miehe (DEFORMATION = 'SIMO-MIEHE'), validé par ailleurs.

Comportement VMIS ISOT LINE avec SIMO MIEHE, en déformation plane :

Déplacement imposé	Grandeur testée	Référence (MPa)
500 mm	SIEQ_ELGA	1125
700 mm	SIEQ_ELGA	1411
900 mm	SIEQ_ELGA	1664
1100 mm	SIEQ_ELGA	1891.7

On compare les valeurs des contraintes équivalentes de von Mises à la fin des phases de traction et on vérifie leur invariance durant les phases de rotation.

Comportement VMIS ISOT LINE avec SIMO MIEHE en contrainte plane

Déplacement imposé	Grandeur testée	Référence (MPa)
500 mm	SIEQ_ELGA	1019.57
500 mm après rotation	SIEQ_ELGA	1019.57
700 mm	SIEQ_ELGA	1271

On vérifie enfin la qualité de la matrice tangente par comparaison avec une matrice tangente obtenue par perturbation. On obtient avec ${\tt SIMO_MIEHE}$, une différence quasi nulle (norme de la différence :

Révision: 9991

Code Aster

Titre: SSND106 - Tractions rotations multiples en grandes[...]

Responsable : Renaud BARGELLINI

obtenue sur la matrice tangente nour les

Date: 24/10/2012 Page: 4/9

Clé: V6.08.106

de l'ordre de 1.E-20). On vérifiera donc la différence obtenue sur la matrice tangente pour les formalismes de grandes déformations testés ici.

Date: 24/10/2012 Page: 5/9 Responsable: Renaud BARGELLINI Clé: V6.08.106 Révision: 9991

Modélisation A 3

3.1 Caractéristique de la modélisation

La modélisation est 3D.

Caractéristiques du maillage 3.2

Le maillage est constitué d'une maille hexaédrique linéaire (à 8 nœuds).

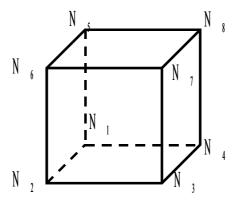


Figure 2 : Maillage de la modélisation

3.3 Grandeurs testées et résultats

Comportement VMIS ISOT LINE avec GDEF HYPO ELAS

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500 mm	SIEQ_ELGA	1125	0,2
700 mm	SIEQ_ELGA	1411	0,2
900 mm	SIEQ_ELGA	1664	0,2
1100 mm	SIEQ_ELGA	1891.7	0,2

Comportement VMIS_ISOT_LINE avec GDEF_LOG

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500 mm	SIEQ_ELGA	1125	0,2
700 mm	SIEQ_ELGA	1411	0,2
900 mm	SIEQ_ELGA	1664	0,2
1100 mm	SIEQ_ELGA	1891.7	0,2

Date: 24/10/2012 Page: 6/9 Responsable: Renaud BARGELLINI Clé: V6.08.106 Révision: 9991

Modélisation B 4

4.1 Caractéristique de la modélisation

La modélisation utilisée est bidimensionnelle. On utilise les éléments D PLAN

Caractéristiques du maillage 4.2

Le maillage est constitué d'une maille quadrangulaire linéaire (à 4 nœuds).

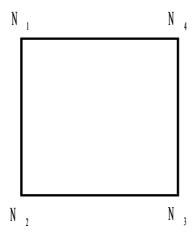


Figure 3 : Maillage de la modélisation B

Grandeurs testées et résultats 4.3

Comportement VMIS ISOT LINE avec GDEF HYPO ELAS

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500mm	SIEQ_ELGA	1125	0,2
700mm	SIEQ_ELGA	1411	0,2
900mm	SIEQ_ELGA	1664	0,2
1100mm	SIEQ_ELGA	1891.7	0,2

Comportement VMIS_ISOT_LINE avec GDEF_LOG

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500mm	SIEQ_ELGA	1125	0,2
700mm	SIEQ_ELGA	1411	0,2
900mm	SIEQ_ELGA	1664	0,2
1100mm	SIEQ_ELGA	1891.7	0,2

Date: 24/10/2012 Page: 7/9 Responsable: Renaud BARGELLINI Clé: V6.08.106 Révision: 9991

Modélisation C 5

5.1 Caractéristique de la modélisation

La modélisation est 3D, et simule un état de contrainte plane. On considère ici seulement une traction, une rotation et une nouvelle traction.

5.2 Caractéristiques du maillage

Le maillage est constitué d'une maille hexaédrique linéaire (à 8 nœuds).

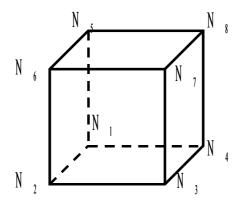


Figure 4 : Maillage identique à celui de la modélisation

5.3 Grandeurs testées et résultats

Comportement VMIS ISOT LINE avec GDEF LOG

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500 mm	SIEQ_ELGA	1019.57	2
500 mm après rotation	SIEQ_ELGA	1019.57	2
700 mm	SIEQ_ELGA	1271	2

Comportement VMIS ISOT LINE avec GDEF HYPO ELAS

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500 mm	SIEQ_ELGA	1019.57	2
500 mm après rotation	SIEQ_ELGA	1019.57	2
700 mm	SIEQ_ELGA	1271	2

Date: 24/10/2012 Page: 8/9 Responsable: Renaud BARGELLINI Clé: V6.08.106 Révision: 9991

Modélisation D 6

6.1 Caractéristique de la modélisation

La modélisation utilisée est bidimensionnelle en contrainte plane (C PLAN). Le but de cette modélisation est de valider l'algorithme de grandes déformations $\mathtt{GDEF_LOG}$ en $\mathtt{C_PLAN}$. On compare donc les résultats avec ceux obtenus par <code>GDEF LOG</code> dans la modélisation $\ \ C$, qui traite en <code>3D</code> un problème équivalent.

6.2 Caractéristiques du maillage

Le maillage est constitué d'une maille quadrangulaire linéaire (à 4 nœuds).

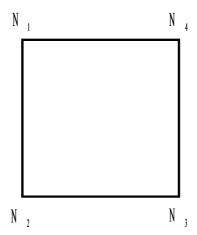


Figure 5 : Maillage identique à celui de la modélisation B

6.3 Grandeurs testées et résultats

Comportement VMIS ISOT LINE avec GDEF LOG

Déplacement imposé	Grandeur testée	Référence (MPa)	Tolérance (%)
500 mm	SIEQ_ELGA	1006.9	0,1
500 mm après rotation	SIEQ_ELGA	1006.9	0,1
700 mm	SIEQ_ELGA	1256.1	0,1

Responsable: Renaud BARGELLINI

Date : 24/10/2012 Page : 9/9 Clé : V6.08.106 Révision : 9991

7 Synthèse des résultats

Les résultats obtenus sont satisfaisants, aussi bien en 3D qu'en 2D . On constate un écart maximum inférieur à 0.2% entre SIMO_MIEHE (pris comme référence) et les formalismes GDEF_HYPO_ELAS et GDEF_LOG.

Ce test valide également le bon fonctionnement de GDEF LOG en contraintes planes.

De plus, pour toutes les modélisations, la contrainte équivalente reste constante durant les phases de rotations.