Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Date: 25/07/2014 Page: 1/8 Responsable: Sébastien FAYOLLE Clé: V6.05.108 Révision: 12407

# SSNS108 – Simulation de l'essai SAFE par la poussée progressive

#### Résumé:

Ce test représente une modélisation simplifiée d'une étude SAFE (Structure Armées Faiblement Élancées) sous chargement statique monotone de type poussée progressive (« pushover »). Il a pour objectif de valider les options de calcul deborst et tangente secante sous newton.

Ce test est délicat car il considère un problème mal posé, sans unicité de solution, du à l'adoucissement matériau lié à l'endommagement.

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Date: 25/07/2014 Page: 2/8 Responsable: Sébastien FAYOLLE Clé: V6.05.108 Révision: 12407

### Problème de référence

#### 1.1 Géométrie

La géométrie étudiée est celle de la structure T5 du programme SAFE [bib1]. Les caractéristiques géométriques des parties en béton armé sont illustrées par la [Figure 1.1-a]. Elles sont composées d'un voile et de deux murs de retour (ou refends). La structure est également équipée de pièces métalliques rapportées nécessaires à sa mise sous chargement. Ces pièces ne seront pas modélisées dans cette étude.

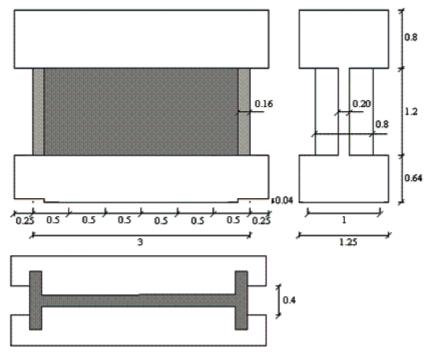
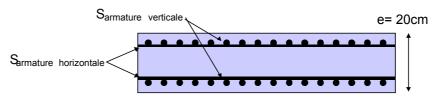




Figure 1.1-a: Géométrie de la maquette T5



Coupe dans le plan horizontal du mur central Figure 1.1-b: Illustration du ferraillage

Révision: 12407

Date: 25/07/2014 Page: 3/8

Clé: V6.05.108

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Responsable: Sébastien FAYOLLE

Le ferraillage de la maquette est composé de nappes d'armatures horizontales et verticales placées sur chacune des deux faces du mur central, ainsi que dans les retours [Figure 1.1-b]. Suivant les deux directions horizontales et verticales, les taux de ferraillage  $r_h$  et  $r_v$  (quantité d'armature par mètre linéaire du voile) sont identiques et égaux à 0.8%, soit :

$$\frac{S_{armatureshorizontales}}{ml(vertical)} = r_h e = \frac{0.8}{100}.20 cm = 16 cm^2/ml$$

$$\frac{S_{armaturesverticales}}{ml(horizontale)} = r_v e = \frac{0.8}{100}.20 cm = 16 cm^2/ml$$

Et ce pour l'ensemble des deux nappes faces Nord et Sud.

Soit,  $8 cm^2/ml$  par nappe et par direction (horizontale et verticale, soit  $2x8 = 16 cm^2/ml$ ).

Date: 25/07/2014 Page: 4/8

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Responsable : Sébastien FAYOLLE Clé : V6.05.108 Révision : 12407

### 1.2 Propriétés matériaux

Le comportement du béton est modélisé via le comportement élasto-plastique endommageable ENDO ISOT BETON [bib2]. Les propriétés matériaux du béton sont résumées [Tableau 1.2-1].

| Module d'Young                          | $E_b$      | E           | 32 308 <i>MPa</i> |
|-----------------------------------------|------------|-------------|-------------------|
| Coefficient de Poisson                  | $\nu_b$    | NU          | 0,2               |
| Masse volumique                         | $ ho_b$    | RHO         | $2500kglm^3$      |
| Contrainte limite en traction           | $\sigma_t$ | SYT         | 3,415 <i>MPa</i>  |
| Contrainte limite en compression        | $\sigma_c$ | SYC         | 25 MPa            |
| Pente de la courbe post-pic en traction |            | D SIGM EPSI | -7000 MPa         |

Tableau 1.2-1: Propriétés du modèle béton

Les parties en béton sont renforcées par des armatures en acier modélisées par GRILLE\_MEMBRANE [bib3]. L'acier a un comportement élastoplastique avec écrouissage isotrope linéaire GRILLE\_ISOT\_LINE. Les propriétés matériaux des aciers sont récapitulées dans le tableau [Tableau 1.2-2].

| Module d'Young                      | $E_a$        | E           | 200 000 MPa             |
|-------------------------------------|--------------|-------------|-------------------------|
| Coefficient de Poisson              | $\nu_a$      | NU          | 0,3                     |
| Masse volumique                     | $\rho_{a}$   | RHO         | 7 800 kg/m <sup>3</sup> |
| Contrainte limite de plastification | $\sigma_{y}$ | SY          | 570 MPa                 |
| Pente d'écrouissage                 | -            | D_SIGM_EPSI | 300 MPa                 |

Tableau 1.2-2: Propriétés du modèle acier

## 1.3 Conditions aux limites et chargements

#### Liaison à la base :

La liaison de la maquette avec la longrine basse a été jugée suffisamment raide pour qu'on la modélise par un ancrage parfait. Ainsi, tous les nœuds de la base du modèle sont bloqués suivant tous les degrés de liberté.

#### Mouvements de la longrine haute :

La présence de la longrine haute a pour but de maintenir le bord supérieur du mur à l'horizontal en empêchant les rotations autour de l'axe Y.

#### Chargement:

Les chargements pris en compte sont le poids propre de la structure ainsi qu'un déplacement imposé en haut de la structure.

#### 1.4 Conditions initiales

Sans objet

Date: 25/07/2014 Page: 5/8

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Responsable : Sébastien FAYOLLE Clé : V6.05.108 Révision : 12407

### 2 Solution de référence

### 2.1 Méthode de calcul

Les données de références sont récupérées d'une simulation du même essai avec une loi de comportement globalisée GLRC\_DM [bib4]. La [Figure 2.1-a] illustre les résultats de cette simulation par rapport aux données expérimentales.

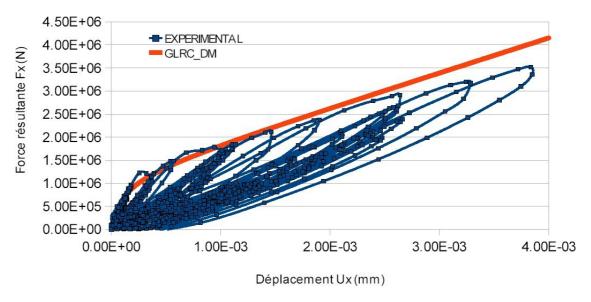



Figure 2.1-a: Comparaison des données expérimentales pour un chargement statique alterné sur la maquette T5 avec une simulation utilisant GLRC\_DM

### 2.2 Grandeurs et résultats de référence

Les grandeurs testées sont les efforts et les déplacements aux instants  $t = 0.03 \, s$  et  $t = 0.0495 \, s$ . Les données sont récapitulées dans le [Tableau 2.2-1].

| Instant ( s ) | S ) Force ( $MN$ ) |  |
|---------------|--------------------|--|
| 0,03          | 1,07976            |  |
| 0,0495        | 1,32921            |  |

Tableau 2.2-1: Grandeurs testées

#### 2.3 Incertitude sur la solution

Solutions numériques.

Date: 25/07/2014 Page: 6/8

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Responsable : Sébastien FAYOLLE Clé : V6.05.108 Révision : 12407

## 2.4 Références bibliographiques

- [1] P. PEGON, G. MAGONETTE, F.J. MOLINA, G. VERZELETTI, T. DYNGELAND, P. NEGRO, D. TIRELLI, P. TOGNOLI, "Programme SAFE: Rapport du test T5", Unité Mécanique des Structures, Institut des Systèmes, de l'Informatique et de la Sécurité, Centre Commun de Recherche, Commission Européenne, 21020 Ispra (Varese), Italie
- [2] [R7.01.04-C], Loi de comportement ENDO ISOT BETON
- [3] [R3.08.07-A], Éléments de grille d'armature GRILLE MEMBRANE
- [4] S. GHAVANIAM, S. MOULIN, "Modélisation de la structure T5 du programme SAFE à l'aide de Code\_Aster®", EDF R&D, H-T62-2006-04624-FR, 2006.

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Date : 25/07/2014 Page : 7/8

Responsable : Sébastien FAYOLLE

Clé : V6.05.108 Révision : 12407

### 3 Modélisation A

### 3.1 Caractéristiques de la modélisation

Le béton est modélisé à l'aide d'éléments DKT (coque multicouche en contraintes planes). Le ferraillage est simplifié en négligeant les armatures de couture entre les différentes nappes. Quant aux nappes d'armature des voiles, elles sont modélisées par des éléments plans de type GRILLE\_MEMBRANE (positionnés à la côte exacte à l'intérieur du béton pour tenir compte du béton de l'enrobage). La liaison entre les mailles du mur central et des murs de retour se fait par le partage des nœuds au niveau des feuillets médians.

### 3.2 Caractéristiques du maillage

Le maillage utilisé pour le calcul est représenté sur la [Figure 3.2-a].



Figure 3.2-a: Maillage de la maquette T5

Le nombre de mailles quadrangulaires linéaires (QUAD4) est de 625. Ces mailles sont répartis en éléments :

- DKT à hauteur de 125,
- GRILLE MEMBRANE à hauteur de 500.

#### 3.3 Grandeurs testées et résultats

| Instant ( $_S$ ) | Force ref. ( $M\!N$ ) | Force num. ( $M\!N$ ) | Écart Force (%) |
|------------------|-----------------------|-----------------------|-----------------|
| 0,03             | 1,07976               | 1,64144               | 52,1            |
| 0,0495           | 1,32921               | 1,46471               | 13,1            |



Version default

Date: 25/07/2014 Page: 8/8

Titre : SSNS108 - Simulation de l'essai SAFE par la poussé[...]

Responsable : Sébastien FAYOLLE Clé : V6.05.108 Révision : 12407

## 4 Synthèse des résultats

Bien que les résultats obtenus entre les deux modélisations peuvent donner des écarts importants (plus de 50%), le cas test a permis de montrer la possibilité de prendre en compte les options de calcul <code>DEBORST</code> et <code>TANGENTE\_SECANTE</code> sous <code>NEWTON</code>.