Responsable : Patrick MASSIN

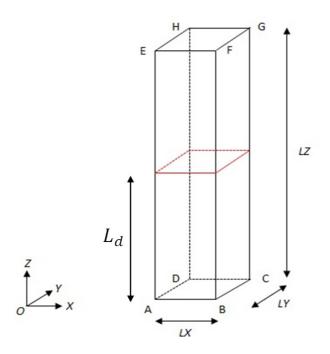
Date: 23/07/2015 Page: 1/18 Clé: V6.04.245 Révision: 13579

SSNV245 - Imposition de conditions de Dirichlet sur des éléments XFEM Heaviside à l'aide d'une fonction de l'espace

Résumé:

Il s'agit de valider l'imposition de conditions de Dirichlet à l'aide d'une fonction de l'espace sur des éléments Heaviside XFEM, aussi bien quadratiques que linéaires. En particulier, on utilisera une fonction discontinue au travers de l'interface.

Date: 23/07/2015 Page: 2/18 Responsable: Patrick MASSIN Clé: V6.04.245 Révision: 13579


Problème de référence

1.1 Géométrie du problème

Il s'agit d'une colonne de hauteur $LZ=5\,m$, de longueur $LX=1\,m$ et de largeur $LY=1\,m$. Cette colonne présente en $Z = L_d$ une discontinuité de type interface (interface non maillée qui est introduite dans le modèle par l'intermédiaire des level-sets grâce à l'opérateur DEFI FISS XFEM). La colonne est ainsi entièrement traversée par la discontinuité (au niveau de l'approximation du champ de déplacements, on ne prend en compte que l'enrichissement Heaviside). La hauteur de l'interface $Y = L_d$ sera différente dans les modélisations c et d.

On représente sur la Figure 1.1-a la géométrie de la colonne.

Figure 1.1-a: Géométrie du problème 3D

1.2 Propriétés matériaux

Module d'Young : E = 5800 MPaCoefficient de Poisson : v=0

Coefficient de dilatation thermique : $\alpha = 0 K^{-1}$

1.3 **Conditions aux limites**

Cas 2D

Les conditions aux limites que l'on applique sont de type Neuman. On impose :

Titre: SSNV245 - Imposition de conditions de Dirichlet su[...] Responsable: Patrick MASSIN

Date: 23/07/2015 Page: 3/18 Clé: V6.04.245 Révision: 13579

- $\bullet \quad \text{ Dans tout le domaine } \ u_{\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{f}_{\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y}) \quad \text{ avec } \ \boldsymbol{f}_{\boldsymbol{y}}(\boldsymbol{x},\boldsymbol{y}) = \begin{cases} -0.01 * \boldsymbol{y} & si \quad \boldsymbol{Y} < L_d \\ 0.01 * (L\boldsymbol{Y} \boldsymbol{y}) & si \quad \boldsymbol{Y} > L_d \end{cases}$
- Sur le côté [AD] $u_x(x,y)=f_{null}$ avec f_{null} la fonction constante de valeur nulle
- Sur le côté [BC] $u_x(x,y)=f_x(x,y)$

Dans la modélisation A (linéaire)
$$f_x(x,y) = \begin{cases} 0.01 * y & si \ Y < L_d \\ -0.01 * (LY - y) & si \ Y > L_d \end{cases}$$

$$\begin{aligned} & \text{Dans la modélisation A (linéaire)} \quad f_{_X}(x\,,y) \!=\! \left\{ \! \begin{array}{c} 0.01\!*y \;\; si \;\; Y\!<\!L_d \\ -0.01\!*(LY\!-y) \;\; si \;\; Y\!>\!L_d \end{array} \right. \\ & \text{Dans la modélisation B (quadratique)} \quad f_{_X}(x\,,y) \!=\! \left\{ \begin{array}{c} 0.01\!*y^2 \;\; si \;\; Y\!<\!L_d \\ -0.01\!*(LY\!-y)^2 \;\; si \;\; Y\!>\!L_d \end{array} \right. \end{aligned}$$

Cas 3D

Les conditions aux limites que l'on applique sont de type Neuman. On impose :

- Dans tout le domaine $u_z(x, y, z) = f_z(x, y, z)$ avec $f_z(x, y, z) = \begin{cases} -0.01 * z & si & Z < L_d \\ 0.01 * (LZ - z) & si & Z > L_d \end{cases}$
- Sur la face [ADEH] $u_x(x,y,z)=f_{null}$ avec f_{null} la fonction constante de valeur nulle
- Sur la face [BCGF] $u_x(x,y,z)=f_x(x,y,z)$

$$\begin{aligned} & \text{Dans la modélisation C (linéaire)} \quad f_{_X}(x\,,y\,,z) \!=\! \! \begin{cases} & 0.01\!*z\ \text{si}\ Z\!\!< L_d \\ & -0.01\!*(LZ\!-z)\ \text{si}\ Z\!\!> L_d \end{cases} \\ & \text{Dans la modélisation D (quadratique)} \quad f_{_X}(x\,,y\,,z) \!=\! \begin{cases} & 0.01\!*z^2\ \text{si}\ Z\!\!< L_d \\ & -0.01\!*(LZ\!-z)^2\ \text{si}\ Z\!\!> L_d \end{cases} \end{aligned}$$

Dans la modélisation D (quadratique)
$$f_x(x,y,z) = \begin{cases} 0.01*z^2 & \text{si } Z < L_d \\ -0.01*(LZ-z)^2 & \text{si } Z > L_d \end{cases}$$

Dans tout le domaine $u_v(x, y, z) = f_{null}$

Date: 23/07/2015 Page: 4/18 Clé: V6.04.245 Responsable: Patrick MASSIN Révision : 13579

Solution de référence

2.1 Méthode de calcul

Cas 2D

Le coefficient de Poisson \sim étant nul, la solution s'écrit indépendamment suivant la direction x et la direction y.

En négligeant la pesanteur, l'équation s'écrit (en contraintes totales) :

$$\mathbf{Div}(\sigma) = \mathbf{0}$$

Étant dans le cas élastique, on a $\sigma = E \epsilon$, soit finalement $\mathbf{Div}(\epsilon) = \mathbf{0}$.

Selon
$$x$$
, $\frac{\partial \epsilon_{xx}}{\partial x} = 0$ d'où:

- les déplacements au dessus de l'interface s'écrivent $u_x(x,y) = \frac{-0.01 * x}{LY} * (LY y)$
- les déplacements en dessous de l'interface s'écrivent $u_x(x,y) = f_x(x,y) * \frac{A}{IY}$

Selon y, les déplacements sont imposés partout donc :

- les déplacements au dessus de l'interface s'écrivent $u_{\nu}(x,y) = f_{\nu}(x,y)$
- les déplacements au dessous de l'interface s'écrivent $u_{\nu}(x,y) = f_{\nu}(x,y)$

Cas 3D

Le coefficient de Poisson \vee étant nul, la solution s'écrit indépendamment suivant la direction x, la direction y et la direction z.

En négligeant la pesanteur, l'équation s'écrit (en contraintes totales) :

$$\mathbf{Div}(\sigma) = \mathbf{0}$$

Étant dans le cas élastique, on a $\sigma = E \epsilon$, soit finalement $\mathbf{Div}(\epsilon) = \mathbf{0}$.

Selon
$$x$$
, $\frac{\partial \xi_{x}}{\partial x} = 0$ d'où:

- les déplacements au dessus de l'interface s'écrivent $u_x(x,y,z)=f_x(x,y,z)*\frac{x}{IX}$
- les déplacements en dessous de l'interface s'écrivent $u_x(x,y,z)=f_x(x,y,z)*\frac{x}{\tau v}$

Selon z, les déplacements sont imposés partout donc :

- les déplacements au dessus de l'interface s'écrivent $u_z(x, y, z) = f_z(x, y, z)$
- les déplacements au dessous de l'interface s'écrivent $u_z(x, y, z) = f_z(x, y, z)$

Selon y, les déplacements sont nuls partout.

Date: 23/07/2015 Page: 5/18 Clé: V6.04.245 Responsable: Patrick MASSIN Révision : 13579

2.2 Grandeurs et résultats de référence

On teste les déplacements au dessus et en dessous de l'interface.

2.2.1 En 2D

$$\begin{aligned} \text{Dans la modélisation A (linéaire)} \quad & f_{_X}(x\,,y) \!=\! \begin{cases} 0.01\!*y \;\; si \;\; Y \!<\! L_d \\ -0.01\!*(LY\!-y) \;\; si \;\; Y \!>\! L_d \end{cases} \\ \text{Dans la modélisation B (quadratique)} \quad & f_{_X}(x\,,y) \!=\! \begin{cases} 0.01\!*y^2 \;\; si \;\; Y \!<\! L_d \\ -0.01\!*(LY\!-y)^2 \;\; si \;\; Y \!>\! L_d \end{cases} \end{aligned}$$

avec
$$LX = 1 \text{m}$$
, $LY = 5 \text{m}$ et $f_y(x, y) = \begin{cases} -0.01 * y \text{ si } Y < L_d \\ 0.01 * (LY - y) \text{ si } Y > L_d \end{cases}$

Selon x:

- les déplacements au dessus de l'interface s'écrivent $u_x(x,y) = f_x(x,y) * \frac{x}{Lx}$
- les déplacements en dessous de l'interface s'écrivent $u_x(x,y) = f_x(x,y) * \frac{x}{t \cdot x}$

Selon y, les déplacements sont imposés partout donc :

- les déplacements au dessus de l'interface s'écrivent $u_v(x,y)=f_v(x,y)$
- les déplacements au dessous de l'interface s'écrivent $u_v(x,y)=f_v(x,y)$

Pour la modélisation A,
$$Y = L_d = \frac{13*LY}{25}$$
 .

On teste le déplacement selon y des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence Valeur de référence	
DY (en dessous)	'ANALYTIQUE'	-2.6E-02
DY (au dessus)	'ANALYTIQUE'	2.4E-02

On teste également le déplacement selon x des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure en x=1m.

Grandeurs testées	Type de référence	Valeur de référence
DX (en dessous)	'ANALYTIQUE'	2.6E-02
DX (au dessus)	'ANALYTIQUE'	-2.4E-02

Pour la modélisation B, $Y = L_d = \frac{13*LY}{25}$.

Responsable : Patrick MASSIN

Date: 23/07/2015 Page: 6/18 Clé: V6.04.245 Révision: 13579

On teste le déplacement selon y des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence	Valeur de référence
DY (en dessous)	'ANALYTIQUE'	-2.6E-02
DY (au dessus)	'ANALYTIQUE'	2.4E-02

On teste également le déplacement selon x des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure en x=1m.

Grandeurs testées	Type de référence	Valeur de référence
DX (en dessous)	'ANALYTIQUE'	6.76E-02
DX (au dessus)	'ANALYTIQUE'	-5.76E-02

2.2.2 En 3D

$$\begin{aligned} & \text{Dans la modélisation C (linéaire)} \ \ f_{_X}(x\,,y\,,z) \!=\! \! \begin{cases} & 0.01*z \ si \ Z\!<\!L_d \\ & -0.01*(LZ\!-\!z) \ si \ Z\!>\!L_d \end{cases} \\ & \text{Dans la modélisation D (quadratique)} \quad f_{_X}(x\,,y\,,z) \!=\! \! \begin{cases} & 0.01*z^2 \ si \ Z\!<\!L_d \\ & -0.01*(LZ\!-\!z)^2 \ si \ Z\!>\!L_d \end{cases} \end{aligned}$$

avec
$$LX = 1 \text{m}$$
, $LY = 1 \text{m}$, $LZ = 5 \text{m}$ et $f_z(x, y, z) = \begin{cases} -0.01 * z & \text{si } Z < L_d \\ 0.01 * (LZ - z) & \text{si } Z > L_d \end{cases}$.

Selon x:

- les déplacements au dessus de l'interface s'écrivent $u_x(x,y,z)=f_x(x,y,z)*\frac{x}{LX}$
- les déplacements en dessous de l'interface s'écrivent $u_x(x,y,z) = f_x(x,y,z) * \frac{x}{LX}$

Selon z, les déplacements sont imposés partout donc :

- les déplacements au dessus de l'interface s'écrivent $u_z(x, y, z) = f_z(x, y, z)$
- les déplacements au dessous de l'interface s'écrivent $u_z(x, y, z) = f_z(x, y, z)$

Selon y , les déplacements sont nuls partout.

Pour la modélisation C,
$$Z = L_d = \frac{2*LZ}{5}$$
.

On teste le déplacement selon z des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence	Valeur de référence
DZ (en dessous)	'ANALYTIQUE'	-2.0E-02

Responsable: Patrick MASSIN

Date : 23/07/2015 Page : 7/18 Clé : V6.04.245 Révision : 13579

DZ	(au dessus)	'ANALYTIQUE'	3.0E-02
----	-------------	--------------	---------

On teste également le déplacement selon x des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure en x=1m.

Grandeurs testées	Type de référence	Valeur de référence
DX (en dessous)	'ANALYTIQUE'	2.0E-02
DX (au dessus)	'ANALYTIQUE'	-3.0E-02

Pour la modélisation D,
$$Z = L_d = \frac{LZ}{2}$$
 .

On teste le déplacement selon z des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence	Valeur de référence
DZ (en dessous)	'ANALYTIQUE'	-2.5E-02
DZ (au dessus)	'ANALYTIQUE'	2.5E-02

On teste également le déplacement selon x des deux nœuds de l'interface respectivement sur la lèvre inférieure et supérieure de la fissure en x=1m.

Grandeurs testées	Type de référence	Valeur de référence
DX (en dessous)	'ANALYTIQUE'	6.25E-02
DX (au dessus)	'ANALYTIQUE'	-6.25E-02

2.3 Incertitudes sur la solution

Aucune, les valeurs testées sont analytiques.

Date: 23/07/2015 Page: 8/18 Responsable: Patrick MASSIN Clé: V6.04.245 Révision: 13579

Modélisation A 3

3.1 Caractéristiques de la modélisation

Il s'agit d'une modélisation D PLAN utilisant des éléments XFEM linéaires.

L'interface est non maillée et coupe l'élément central en $Y=L_d=\frac{13*LY}{25}$. Ainsi on a 3 éléments

XFEM et 2 éléments classiques. Comme indiqué sur la Figure 3.1-a, les 3 éléments XFEM subissent un sous découpage en sous triangles (pour effectuer l'intégration de Gauss-Legendre de part et d'autre des lèvres de l'interface, mais ces sous-éléments triangulaires ne sont pas des éléments du

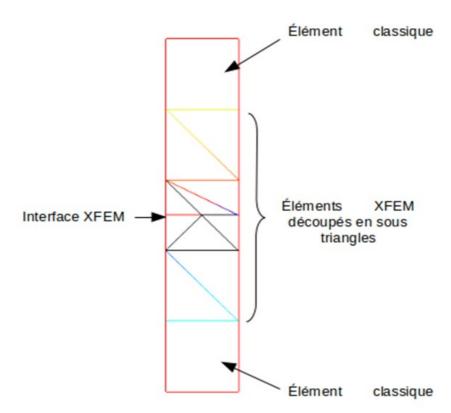
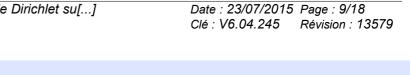



Figure 3.1-a: Caractéristiques de la modélisation

3.2 Caractéristique du maillage

Le maillage composé de 5 QUAD4 est représenté sur la Figure 3.2-a.

Responsable : Patrick MASSIN

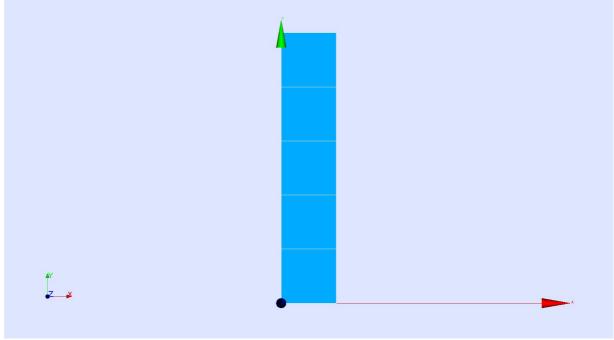


Figure 3.2-a: Maillage 2D

3.3 Grandeurs testées et résultats

Les résultats (résolution avec STAT_NON_LINE) sont synthétisés dans le tableau ci-dessous pour la direction y. On teste le déplacement suivant y des nœuds de l'interface.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DY (en dessous) MIN	'ANALYTIQUE'	-2.6E-02	0.001
DY (au dessus) MAX	'ANALYTIQUE'	2.4E-02	0.001

On teste également le déplacement selon x des deux nœuds de l'interface situés sur le côté [BC] et respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DX (en dessous côté [BC])	'ANALYTIQUE'	2.6E-02	0.001
DX (au dessus côté [BC])	'ANALYTIQUE'	-2.4E-02	0.001

On présente les champs de déplacements selon la direction y (Figure 3.3-a) et x (Figure 3.3-b).

Date: 23/07/2015 Page: 10/18 Responsable: Patrick MASSIN Clé: V6.04.245 Révision: 13579

Figure 3.3-a: Champ de déplacements selon la direction (Oy)

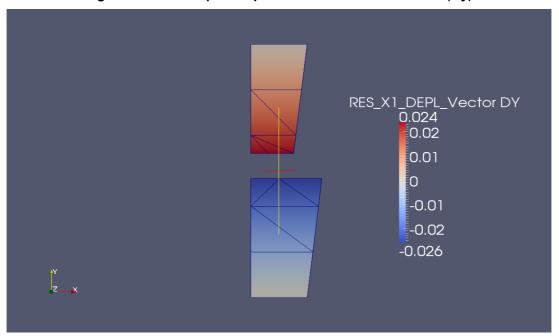
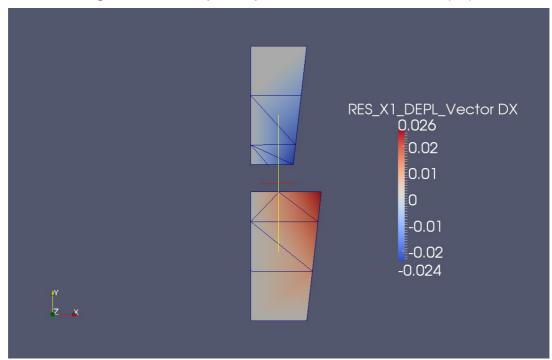



Figure 3.3-b: Champ de déplacements selon la direction (Ox)

Titre : SSNV245 - Imposition de conditions de Dirichlet su[...]

Date : 23/07/2015 Page : 11/18

Responsable : Patrick MASSIN

Clé : V6.04.245 Révision : 13579

4 Modélisation B

4.1 Caractéristiques de la modélisation

Il s'agit d'une modélisation <code>D_PLAN</code> utilisant des éléments XFEM quadratiques. Le barreau sur lequel on effectue la modélisation est divisé en 5 <code>QUAD8</code>. L'interface est non maillée et coupe l'élément central en $Y = L_d = \frac{13*LY}{25}$. On a 3 éléments XFEM et 2 éléments classiques.

4.2 Caractéristique du maillage

Le maillage est identique à celui de la modélisation A, excepté qu'il est quadratique. Il est composé de 5 QUAD8.

4.3 Grandeurs testées et résultats

Les résultats (résolution avec STAT_NON_LINE) sont synthétisés dans le tableau ci-dessous pour la direction y. On teste le déplacement suivant y des nœuds de l'interface.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DY (en dessous) MIN	'ANALYTIQUE'	-2.6E-02	0.001
DY (au dessus) MAX	'ANALYTIQUE'	2.4E-02	0.001

On teste également le déplacement selon x des deux nœuds de l'interface situés sur le côté [BC] et respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DX (en dessous côté [BC])	'ANALYTIQUE'	6.76E-02	0.001
DX (au dessus côté [BC])	'ANALYTIQUE'	-5.76E-02	0.001

On présente le champ de déplacements selon la direction y (Figure 4.3-a) et x (Figure 4.3-b).

Date: 23/07/2015 Page: 12/18 Responsable: Patrick MASSIN Clé: V6.04.245 Révision: 13579

Figure 4.3-a: Champ de déplacements selon la direction (Oy)

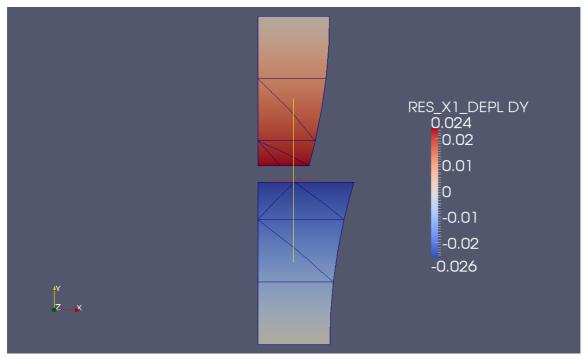
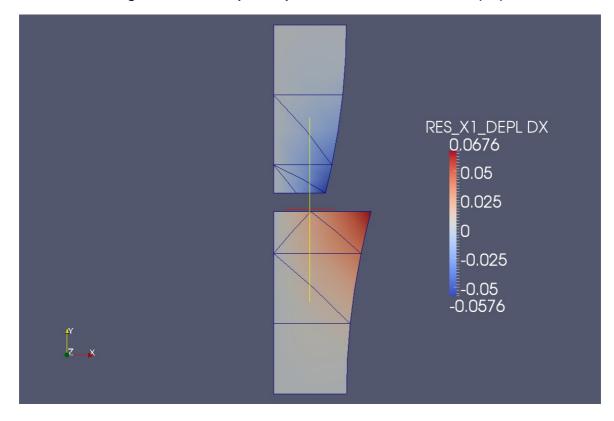



Figure 4.3-b: Champ de déplacements selon la direction (Ox)

Titre : SSNV245 - Imposition de conditions de Dirichlet su[...]

Date : 23/07/2015 Page : 13/18

Responsable : Patrick MASSIN

Clé : V6.04.245 Révision : 13579

5 Modélisation C

5.1 Caractéristiques de la modélisation

Il s'agit d'une modélisation 3D utilisant des éléments XFEM linéaires. La colonne sur laquelle on effectue la modélisation est divisé en 5 HEXA8. L'interface est non maillée et coupe la colonne en $Z = L_d = \frac{2*LZ}{5}$. L'interface est ainsi conforme au maillage. On a 2 éléments XFEM et 3 éléments classiques.

5.2 Caractéristiques du maillage

Le maillage composé de 5 HEXA8 est représenté sur la Figure 5.2-a.

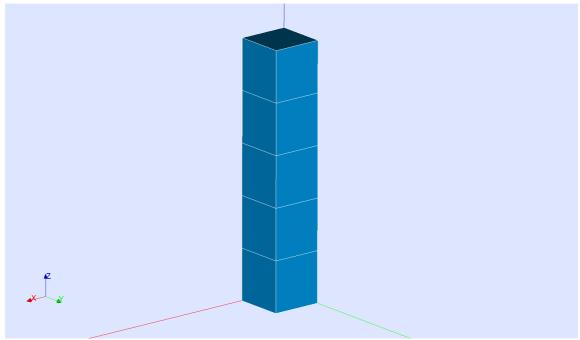


Figure 5.2-a: Maillage 2D

5.3 Grandeurs testées et résultats

Les résultats (résolution avec $STAT_NON_LINE$) sont synthétisés dans le tableau ci-dessous pour la direction z. On teste le déplacement suivant z des nœuds de l'interface.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DZ (en dessous) MIN	'ANALYTIQUE'	-2.0E-02	0.001
DZ (au dessus) MAX	'ANALYTIQUE'	3.0E-02	0.001

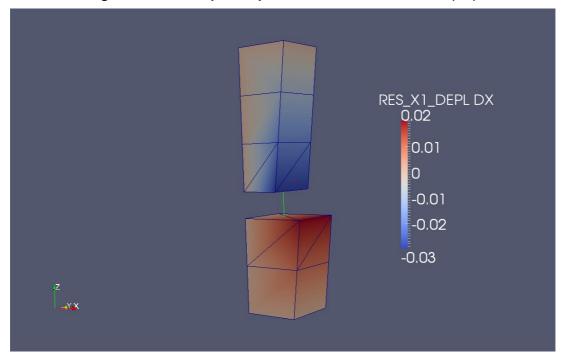
On teste également le déplacement selon x de deux nœuds de l'interface situés sur la face [BCFG] et respectivement sur la lèvre inférieure et supérieure de la fissure.

Titre : SSNV245 - Imposition de conditions de Dirichlet su[...]

Responsable : Patrick MASSIN

Date : 23/07/2015 Page : 14/18

Clé : V6.04.245 Révision : 13579


Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DX (en dessous face [BCFG])	'ANALYTIQUE'	2.0E-02	0.001
DX (au dessus face [BCFG])	'ANALYTIQUE'	-3.0E-02	0.001

On présente le champ de déplacements selon la direction z (Figure 5.3-a) et x (Figure 5.3-b).

RES_X1_DEPL DZ
0.03
0.02
0.01
0
-0.01
-0.02

Figure 5.3-a: Champ de déplacements selon la direction (Oz)

Code_Aster

Titre : SSNV245 - Imposition de conditions de Dirichlet su[...]

Responsable : Patrick MASSIN

Date : 23/07/2015 Page : 15/18 Clé : V6.04.245 Révision : 13579

Date: 23/07/2015 Page: 16/18 Responsable: Patrick MASSIN Clé: V6.04.245 Révision: 13579

Modélisation D 6

6.1 Caractéristiques de la modélisation

Il s'agit d'une modélisation 3D utilisant des éléments XFEM quadratiques. La colonne sur laquelle on effectue la modélisation est divisé en 5 HEXA20. L'interface est non maillée et coupe la colonne en $Z = L_d = \frac{LZ}{2}$. L'interface est ainsi conforme aux nœuds milieux de l'élément central. On a 3 éléments XFEM et 2 éléments classiques.

6.2 Caractéristiques du maillage

Le maillage est identique à celui de la modélisation c excepté qu'il est quadratique. Il est composé 5 HEXA20.

6.3 Grandeurs testées et résultats

Les résultats (résolution avec STAT NON LINE) sont synthétisés dans le tableau ci-dessous pour la direction z. On teste le déplacement suivant z des nœuds de l'interface.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DZ (en dessous) MIN	'ANALYTIQUE'	-2.5E-02	0.001
DZ (au dessus) MAX	'ANALYTIQUE'	2.5E-02	0.001

On teste également le déplacement selon x de deux nœuds de l'interface situés sur la face [BCFG] et respectivement sur la lèvre inférieure et supérieure de la fissure.

Grandeurs testées	Type de référence	Valeur de référence	Tolérance (%)
DX (en dessous face [BCFG])	'ANALYTIQUE'	6.25E-02	0.001
DX (au dessus face [BCFG])	'ANALYTIQUE'	-6.25E-02	0.001

On présente le champ de déplacements selon la direction z (Figure 6.3-a) et x (Figure 6.3-b).

Date: 23/07/2015 Page: 17/18 Responsable: Patrick MASSIN Clé: V6.04.245 Révision: 13579

Figure 6.3-a: Champ de déplacements selon la direction (Oz)

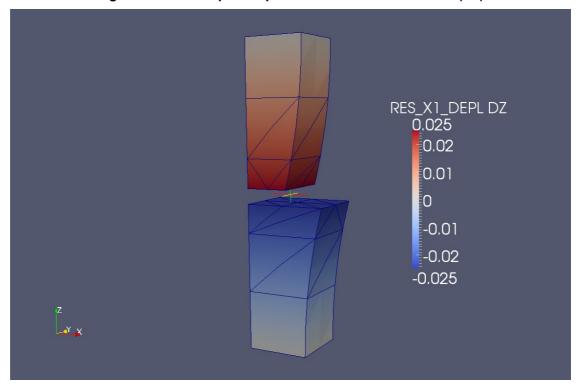
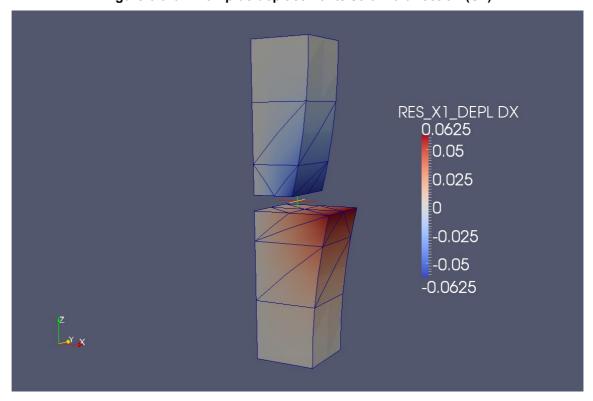



Figure 6.3-b: Champ de déplacements selon la direction (Ox)

Titre: SSNV245 - Imposition de conditions de Dirichlet su[...] Date: 23/07/2015 Page: 18/18 Responsable: Patrick MASSIN

Clé: V6.04.245 Révision: 13579

Synthèse des résultats 7

L'imposition de conditions de Dirichlet sur des éléments XFEM Heaviside à l'aide d'une fonction de l'espace est validée, tant sur les éléments 2D que 3D, pour les modélisations linéaires et quadratiques.

On a également pris soin de réaliser une modélisation dans laquelle l'interface est conforme au maillage (modélisation c) et une modélisation dans laquelle l'interface passe par un nœud milieu (modélisation d). Cette fonctionnalité permet en particulier d'imposer des conditions cinématiques discontinues au travers de l'interface.