Titre : SSNV176 - Identification de la loi ENDO ORTH BETON

Date: 04/08/2011 Page: 1/11 Responsable: François HAMON Clé: V6.04.176 Révision: 7016

# SSNV176 – Identification de la loi ENDO ORTH BETON

#### Résumé:

On présente ici les tests de la loi ENDO ORTH BETON sur un unique élément permettant d'identifier les paramètres du modèle. Dans la mesure où il n'existe pas de formule empirique permettant de calibrer les paramètres, l'utilisateur pourra utiliser certains des cas tests présentés ici pour ajuster ses paramètres. L'étude des paramètres du modèle se trouve dans la documentation [R7.01.09]. Les 5 tests proposés sont les suivants :

- 1) traction simple
- 2) traction simple avec pilotage
- compression simple
- 4) compression simple avec pilotage
- 5) traction simple, compression simple et un test biaxial

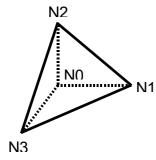
Titre : SSNV176 - Identification de la loi ENDO\_ORTH\_BETON Date : 04/08/2011 Page : 2/11
Responsable : François HAMON Clé : V6.04.176 Révision : 7016

### 1 Problème de référence

### 1.1 Géométrie et conditions aux limites

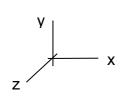
L'élément utilisé est un tétraèdre à un point de gauss. Il n'y a donc pas de problème d'homogénéité des champs dans l'élément.

Les conditions de blocages et les relations linéaires entre les nœuds qu'il faut appliquer sont résumées sur la [Figure 1.1-a]. Les arêtes N0N1, N0N2 et N0N3 sont de longueur 1.


Compte tenu de la géométrie de l'élément, des conditions de blocages et des relations linéaires, la déformation est directement reliée aux déplacements des nœuds :

$$\begin{split} & \varepsilon_{xx} = DX\left(NI\right) \\ & \varepsilon_{yy} = DY\left(N2\right) \\ & \varepsilon_{zz} = DZ\left(N3\right) \\ & \varepsilon_{xy} = DX\left(N2\right) = DY\left(NI\right) \\ & \varepsilon_{xz} = DX\left(N3\right) = DZ\left(NI\right) \\ & \varepsilon_{yz} = DY\left(N3\right) = DZ\left(N2\right) \end{split}$$

Si on travaille à déformation imposée, il suffit donc d'imposer les déplacement aux nœuds adéquats.


Si on souhaite travailler à force imposée, comme c'est le cas pour la modélisation E, il faut imposer les chargements suivants (voir la [Figure 1.1-a] pour la définition des faces F1, F2, F3 et F4):

```
\begin{array}{l} \sigma_{xx} > 0 : FX \text{ sur } FI \text{ et } -1/\sqrt{3} \, FX \text{ sur } F4 \text{ , } FX < 0 \text{ (traction selon } x \text{)} \\ \sigma_{xx} < 0 : FX \text{ sur } FI \text{ et } -1/\sqrt{3} \, FX \text{ sur } F4 \text{ , } FX < 0 \text{ (compression selon } x \text{)} \\ \sigma_{yy} > 0 : FY \text{ sur } F2 \text{ et } -1/\sqrt{3} \, FY \text{ sur } F4 \text{ , } FY < 0 \text{ (traction selon } y \text{)} \\ \sigma_{yy} < 0 : FY \text{ sur } F2 \text{ et } -1/\sqrt{3} \, FY \text{ sur } F4 \text{ , } FY < 0 \text{ (compression selon } y \text{)} \\ \sigma_{zz} > 0 : FZ \text{ sur } F3 \text{ et } -1/\sqrt{3} \, FZ \text{ sur } F4 \text{ , } FZ < 0 \text{ (traction selon } z \text{)} \\ \sigma_{zz} < 0 : FZ \text{ sur } F3 \text{ et } -1/\sqrt{3} \, FZ \text{ sur } F4 \text{ , } FZ < 0 \text{ (compression selon } z \text{)} \\ \end{array}
```



Blocages: N0: DX = DY = DZ = 0

Relations linéaires : Traction/compression en déplacement imposé :  $DZ(NI) = DX(N3) \\ DZ(N2) = DY(N3) \\ Selon \ x \ DX \ imposé sur \ N1 \\ Selon \ y \ DY \ imposé sur \ N2 \\ Selon \ z \ DZ \ imposé sur \ N3$ 



Définition des faces :  $F1 = N0 \ N2 \ N3$   $F2 = N0 \ N1 \ N3$   $F3 = N0 \ N1 \ N2$  $F4 = N1 \ N2 \ N3$ 

Traction/compression en force imposée : Selon x : FX sur F1 et  $-1/\sqrt{3}\,FX$  sur F4 Selon y : FY sur F2 et  $-1/\sqrt{3}\,FY$  sur F4

Selon x: FZ sur F3 et  $-1/\sqrt{3}FZ$  sur F4

Figure 1.1-a : Géométrie et conditions aux limites des tests uniaxiaux

Titre : SSNV176 - Identification de la loi ENDO ORTH BETON

Date: 04/08/2011 Page: 3/11 Responsable: François HAMON Clé: V6.04.176 Révision: 7016

#### 1.2 Propriétés de matériaux

Les caractéristiques matériaux sont identiques pour les 5 tests qui sont présentés.

Les caractéristiques élastiques du matériaux sont les suivantes :

$$E=32000 Mpa$$
;  $v=0.2$ 

Les contraintes de rupture en traction et en compression sont :

$$\sigma_{rupture}^{traction} = 3.2 MPa$$
;  $\sigma_{rupture}^{compression} = -31.8 MPa$ 

On utilise le jeu de paramètre suivant pour la loi de comportement :

| ALPHA | KO(Mpa) | $ECROB(MJ/m^3)$    | $ECROD(MJ/m^3)$    | $K_1(Mpa)$ | $K_2$  |
|-------|---------|--------------------|--------------------|------------|--------|
| 0.87  | 3.10-4  | 1.10 <sup>-3</sup> | 6.10 <sup>-2</sup> | 10.5       | 6.10-4 |

### Remarque:

Il existe plusieurs jeux de paramètres qui fournissent les mêmes contraintes de rupture. Les paramètres ont été identifiés pour que l'enveloppe de rupture des essais biaxiaux ne présente pas de gonflement (cf doc. [R7.01.09]).

Les réponses du modèle pour les tests uniaxiaux sont représentées ci-dessous.

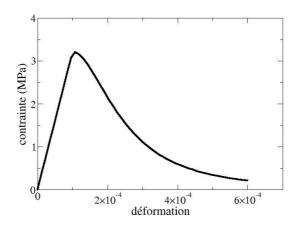



Figure 1.2-a: Réponse de la loi ENDO ORTH BETON en traction simple

Titre : SSNV176 - Identification de la loi ENDO\_ORTH\_BETON

Responsable : François HAMON

Date : 04/08/2011 Page : 4/11 Clé : V6.04.176 Révision : 7016

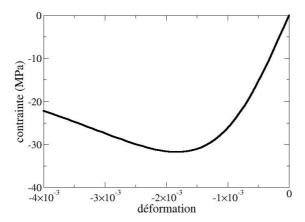



Figure 1.2-b : Réponse de la loi ENDO\_ORTH\_BETON en compression simple

Les variables internes, qui sont numérotées dans Aster, ont la signification suivante :

$$V1 = D_{xx}$$
;  $V2 = D_{yy}$ ;  $V3 = D_{zz}$ ;  $V4 = D_{xy}$ ;  $V5 = D_{xz}$ ;  $V6 = D_{yz}$ ;  $V7 = d$ ;

Où D est le tenseur représentant l'endommagement orthotrope de traction, et d est l'endommagement isotrope de compression (cf. doc. [R7.01.09]).

# 2 Solution de référence

Ce test est un test de non régression.

Titre: SSNV176 - Identification de la loi ENDO ORTH BETON

Date: 04/08/2011 Page: 5/11 Responsable: François HAMON Clé: V6.04.176 Révision: 7016

#### **Modélisation A** 3

#### 3.1 Caractéristiques de la modélisation

Modélisation 3D

Elément MECA TETRA4.

#### Caractéristiques du maillage 3.2

Nombre de nœuds : 4

Nombre de mailles et types : 1 TETRA4

#### 3.3 Fonctionnalités testées

La loi de comportement ENDO\_ORTH\_BETON en traction simple (sans pilotage).

#### 3.4 Trajet de chargement

L'élément est soumis à une traction uniaxiale dans la direction X. Le déplacement DX est imposé sur le nœud NI .

#### 3.5 Valeurs testées

| Instant | Nom du champ | Composante   | Lieu            | Aster       |
|---------|--------------|--------------|-----------------|-------------|
| 50      | DEPL         | DX           | NI              | 3.E-04      |
| 50      | EPSI_ELGA    | EPXX         | VOLUME, point 1 | 3.E-04      |
| 50      | SIEF_ELGA    | SIXX         | VOLUME, point 1 | 1.11388E+00 |
| 50      | VARI_ELGA    | $VI(D_{xx})$ | VOLUME, point 1 | 6.59365E-01 |
| 50      | VARI_ELGA    | V7(d)        | VOLUME, point 1 | 2.42260E-04 |

Date: 04/08/2011 Page: 6/11

Titre : SSNV176 - Identification de la loi ENDO\_ORTH\_BETON

Responsable : François HAMON Clé : V6.04.176 Révision : 7016

# 4 Modélisation B

# 4.1 Caractéristiques de la modélisation

Modélisation 3D

Elément MECA TETRA4.

# 4.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles et types : 1 TETRA4

### 4.3 Fonctionnalités testées

La loi de comportement ENDO ORTH BETON en compression simple (sans pilotage du chargement).

# 4.4 Trajet de chargement

L'élément est soumis à une traction uniaxiale dans la direction X. Le déplacement DX est imposé sur le nœud NI .

### 4.5 Valeurs testées

| Instant | Nom du champ | Composante   | Lieu            | Aster        |
|---------|--------------|--------------|-----------------|--------------|
| 50      | DEPL         | DX           | NI              | -3.E-03      |
| 50      | EPSI_ELGA    | EPXX         | VOLUME, point 1 | -3.E-03      |
| 50      | SIEF_ELGA    | SIXX         | VOLUME, point 1 | -2.74465E+01 |
| 50      | VARI_ELGA    | $V2(D_{yy})$ | VOLUME, point 1 | 1.30416E-01  |
| 50      | VARI_ELGA    | V7(d)        | VOLUME, point 1 | 4.80080E-01  |

Titre : SSNV176 - Identification de la loi ENDO ORTH BETON

Date: 04/08/2011 Page: 7/11 Responsable: François HAMON Clé: V6.04.176 Révision: 7016

#### **Modélisation C** 5

#### 5.1 Caractéristiques de la modélisation

Modélisation 3D

Elément MECA TETRA4.

#### Caractéristiques du maillage 5.2

Nombre de nœuds : 4

Nombre de mailles et types : 1 TETRA4

#### 5.3 Fonctionnalités testées

La loi de comportement ENDO ORTH BETON en traction simple (avec pilotage du chargement).

#### 5.4 Trajet de chargement

L'élément est soumis à une traction uniaxiale dans la direction X. Le déplacement DX est imposé sur le nœud NI . La différence avec la modélisation A est qu'on utilise la méthode de pilotage du chargement PRED ELAS (cf. doc. [R5.03.80]).

#### 5.5 Valeurs testées

| Instant | Nom du champ | Composante   | Lieu            | Aster       |
|---------|--------------|--------------|-----------------|-------------|
| 51      | DEPL         | DX           | N1              | 1.44744E-04 |
| 51      | EPSI_ELGA    | EPXX         | VOLUME, point 1 | 1.44744E-04 |
| 51      | SIEF_ELGA    | SIXX         | VOLUME, point 1 | 2.89945E+00 |
| 51      | VARI_ELGA    | $VI(D_{xx})$ | VOLUME, point 1 | 2.08793E-01 |
| 51      | VARI_ELGA    | V7(d)        | VOLUME, point 1 | 2.30235E-04 |

Titre: SSNV176 - Identification de la loi ENDO ORTH BETON

Date: 04/08/2011 Page: 8/11 Responsable: François HAMON Clé: V6.04.176 Révision: 7016

#### **Modélisation D** 6

#### 6.1 Caractéristiques de la modélisation

Modélisation 3D

Elément MECA TETRA4.

#### Caractéristiques du maillage 6.2

Nombre de nœuds : 4

Nombre de mailles et types : 1 TETRA4

#### 6.3 Fonctionnalités testées

La loi de comportement ENDO ORTH BETON en compression simple (avec pilotage du chargement).

#### 6.4 Trajet de chargement

L'élément est soumis à une traction uniaxiale dans la direction X. Le déplacement DX est imposé sur le nœud NI . La différence avec la modélisation B est qu'on utilise la méthode de pilotage du chargement PRED ELAS (cf. doc. [R5.03.80]).

#### 6.5 Valeurs testées

| Instant | Nom du champ | Composante   | Lieu            | Aster        |
|---------|--------------|--------------|-----------------|--------------|
| 51      | DEPL         | DX           | N1              | -1.17993E-03 |
| 51      | EPSI_ELGA    | EPXX         | VOLUME, point 1 | -1.17993E-03 |
| 51      | SIEF_ELGA    | SIXX         | VOLUME, point 1 | -2.86498E+01 |
| 51      | VARI_ELGA    | $V2(D_{yy})$ | VOLUME, point 1 | 4.73153E-02  |
| 51      | VARI_ELGA    | V7(d)        | VOLUME, point 1 | 1.34312E-01  |

Titre : SSNV176 - Identification de la loi ENDO\_ORTH\_BETON Date : 04/08/2011 Page : 9/11
Responsable : François HAMON Clé : V6.04.176 Révision : 7016

### 7 Modélisation E

# 7.1 Caractéristiques de la modélisation

Modélisation 3D

Elément MECA TETRA4.

# 7.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles et types : 1 TETRA4

### 7.3 Fonctionnalités testées

On teste ici la loi de comportement ENDO ORTH BETON dans 3 cas de chargement :

- 1)  $U_1$ : Traction simple
- 2)  $U_2$ : Compression
- 3)  $U_3$  :Chargement biaxial (traction dans la direction y , compression dans la direction x , avec un rapport fixe des contraintes :  $\sigma_{vv}$ = $-0.2\sigma_{xx}$

Ce cas test permet de vérifier que le jeu de paramètres choisi par l'utilisateur respecte les données suivantes :

- 1) contraintes de rupture en traction,
- 2) contraintes de rupture en compression,
- 3) pas de gonflement de l'enveloppe de rupture pour des essais biaxiaux. Cela consiste à vérifier que la contrainte maximale en traction  $\sigma_{yy}$  de l'essai biaxial est inférieure à la contrainte de rupture en traction simple.

# 7.4 Trajet de chargement

A la différence des modélisations A, B, C et D, c'est la force, et non le déplacement, qui est ici imposée. On utilise la méthode de pilotage du chargement PRED\_ELAS, car le comportement est adoucissant. On applique les chargements suivants :

- $U_1$  : FX sur F1 ,  $-1/\sqrt{3}\,FX$  sur F4 , FX < 0 (Traction)
- $U_2$  : FX sur FI ,  $-1/\sqrt{3}FX$  sur F4 , FX > 0 (Compression)
- $U_3$  : FX sur F1 ,  $-1/\sqrt{3}\,FX$  sur F4 , FX>0 (Compression selon l'axe x );

FY sur F2,  $-1/\sqrt{3}FY$  sur F4, avec FY = -0.2FX (Traction selon l'axe y).

Date: 04/08/2011 Page: 10/11

Titre : SSNV176 - Identification de la loi ENDO ORTH BETON

Responsable: François HAMON Clé: V6.04.176 Révision: 7016

#### 7.5 Valeurs testées

| Instant | Résultat | Nom du champ | Composante | Lieu            | Aster        |
|---------|----------|--------------|------------|-----------------|--------------|
| 42      | U1       | SIEF_ELGA    | SIXX       | VOLUME, point 1 | 3.20684E+00  |
| 76      | U2       | SIEF_ELGA    | SIXX       | VOLUME, point 1 | -3.18000E+01 |
| 74      | U3       | SIEF_ELGA    | SIXX       | VOLUME, point 1 | -1.42038E+01 |

On teste pour chaque calcul, la valeur maximale (en valeur absolue) de la contrainte  $\sigma_{xx}$  . On obtient alors la contrainte de rupture en traction (U1), en compression (U2), et on vérifie que la contrainte de traction dans l'essai biaxial (U3) est inférieure à la contrainte de rupture en traction simple (U1):

1)  $U1: \sigma_{rupture}^{traction} = 3.20684 MPa$ 

2)  $U2: \sigma_{rupture}^{compression} = -31.8 \, MPa$ 3)  $U3: \sigma_{U3}^{traction} = -0.2 \, \sigma_{U3}^{compression} = 0.2 \times 14.2038 \, Mpa$  et  $\sigma_{U3}^{traction} < \sigma_{rupture}^{traction}$ 

Mise en garde 1 : Il se peut que le nombre de pas de temps soit insuffisant pour atteindre la phase adoucissante. L'utilisateur vérifiera donc que pour les calculs UI et U2, le calcul U3 étant soumis à une mise en garde supplémentaire (cf. mise en garde 2), il se trouve bien dans la phase adoucissante (diminution du paramètre de pilotage). La contrainte maximale en valeur absolue ne doit pas être atteinte pour le dernier pas de temps. Dans le cas contraire, il faut poursuivre le calcul jusqu'à la phase adoucissante.

Mise en garde 2: Il est possible, pour certains jeu de paramètres, d'observer des difficultés de convergence pour le calcul U3 lors de la phase adoucissante. En effet, la loi de comportement assure l'existence et l'unicité de la solution en déformation imposée, mais pas en force imposée. Ces problèmes de convergence n'apparaissant que dans la phase adoucissante, l'utilisateur pourra considérer la plus grande valeur du paramètre de pilotage atteinte, égale à la plus grande contrainte de compression  $\sigma_{xx}$  atteinte en valeur absolue, comme référence pour calibrer K2. Ceci n'est vrai que dans le cas où il y a des problèmes de convergence. S'il n'y a pas de problème de convergence pour le calcul U3, et que la contrainte maximale en valeur absolue est atteinte pour le dernier pas de temps, il faut poursuivre le calcul.

Titre : SSNV176 - Identification de la loi ENDO\_ORTH\_BETON Date : 04/08/2011 Page : 11/11
Responsable : François HAMON Clé : V6.04.176 Révision : 7016

# 8 Synthèse des résultats

L'objectif des modélisations présentées dans ce document est d'identifier les paramètres de la loi ENDO\_ORTH\_BETON. Dans la mesure où il n'existe pas de formule empirique pour les valeurs des paramètres à utiliser, l'utilisateur devra calibrer ses paramètres pas à pas sur les différents tests proposés. La méthode pour calibrer les paramètres, qui se trouve dans le document [R7.01.09], peut être résumée ainsi :

- 1) choix de *ALPHA* : (0,85 à 0,9),
- 2) calibrage de K0, ECROB sur les modélisations A, C ou E (calcul U1). Une fois ces paramètres calibrés, il ne doivent pas être modifiés dans la phase de calibrage des autres paramètres,
- 3) calibrage de K1, K2 et ECROD sur les modélisations B (ou D) et E. En fait, la modélisation E (calculs U2 et U3) suffit. Elle permet de vérifier la valeur de la contrainte de rupture en compression simple, et d'assurer que l'enveloppe de rupture pour des essais biaxiaux ne gonfle pas. Il n'est pas nécessaire de calibrer le paramètre K2 de manière très fine car il découle d'un argument qualitatif, et aucune donnée expérimentale n'est jamais disponible pour l'identifier.