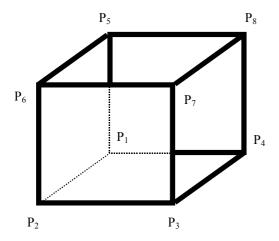
Révision: 9650

Date: 10/10/2012 Page: 1/13

Titre: SSNV169 - Couplage fluage – endommagement

Responsable : Marina BOTTONI Clé : V6.04.169

SSNV169 - Couplage fluage - endommagement

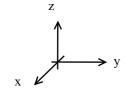

Résumé:

Il s'agit d'un test élémentaire de non-régression permettant de valider le couplage entre le modèle de fluage propre BETON_UMLV_FP et les modèles d'endommagement ENDO_ISOT_BETON et MAZARS. Le test consiste à maintenir un effort constant sur un élément et à le laisser fluer.

Date: 10/10/2012 Page: 2/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Problème de référence

1.1 Géométrie et conditions aux limites


Blocages P1P2P3P4: dz=0 P1P4P8P7: dx=0 P1P2P6P5: dy=0

P2P3P7P6: liaison uniforme suivant x P3P4P8P7: liaison uniforme suivant y

Traction

P5P6P7P8: effort imposé

{dx, dy, dz} sont les déplacements des noeuds suivant les trois directions.

1.2 Propriétés du matériau

Deux jeux de paramètres différents sont utilisés pour le couplage avec le modèle ENDO ISOT BETON (modélisation A, B et C) et pour le modèle de MAZARS (modélisation D à I). Ils sont synthétisés dans les deux tableaux suivants.

Données matériaux utilisées pour le couplage BETON UMLV FP/ENDO ISOT BETON

Paramètres élastiques	
E	31 <i>GPa</i>
NU	0.2
Paramètres de fluage	
K_RS	1.210^5MPa
ETA_RS	$2.2110^{10}MPa.s$
K_IS	6.2210^4MPa
ETA_IS	$4.1610^{10}MPa.s$
K_RD	3.8610^4MPa
ETA_RD	$6.1910^{10}MPa.s$
ETA_ID	$1.6410^{12}MPa.s$
Paramètres d'endommagement	
SYT	3 MPa
D_SIGM_EPSI	-6GPa
SYC	30 <i>MPa</i>

Titre : SSNV169 - Couplage fluage – endommagement Date : 10/10/2012 Page : 3/13
Responsable : Marina BOTTONI Clé : V6.04.169 Révision : 9650

Données matériaux utilisées pour le couplage BETON UMLV FP/MAZARS

Paramètres élastiques	
E	31 <i>GPa</i>
NU	0.2
Paramètres de fluage	
K_RS	$6.010^4 MPa$
ETA_RS	$1.010^{10}MPa.s$
K_IS	3.010^4MPa
ETA_IS	$2.410^{10}MPa.s$
K_RD	$3.410^4 MPa$
ETA_RD	$4.0810^{11}MPa.s$
ETA_ID	$5.4410^{12}MPa.s$
Paramètres d'endommagement	
EPSD0	5.610^{-5}
AT	0.831
BT	21 330.
AC	1.15
BC	1390.
k	0.7
CHI	0.6
Paramètre non-local	
LONG_CARA	0 (100 pour le test I)

On suppose que le séchage n'évolue pas au cours du temps, la fonction de sorption est donc choisie de façon arbitraire.

1.3 Conditions aux limites et chargements

Dans cet essai, le séchage et la température sont supposés uniformes et invariants. L'humidité vaut 100% et la température $20\,^{\circ}C$.

Le chargement mécanique correspond à une traction unidirectionnelle sur la face supérieure de l'éprouvette (P5P6P7P8) imposée en 1 seconde puis maintenue constante jusqu'à atteindre (quasiment) la ruine du matériau par fluage tertiaire. L'intensité du chargement est égale à 0.6 fois la charge de pic instantanée dans le cas du couplage avec <code>ENDO_ISOT_BETON</code> et 0.8 fois la charge de pic instantanée pour le couplage avec <code>MAZARS</code>.

2 Solution de référence

Ce test est un test de non-régression.

Date: 10/10/2012 Page: 4/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation A 3

3.1 Caractéristiques de la modélisation

La modélisation est 3D.

3.2 Caractéristiques du maillage

Nombre de nœuds : 8

Nombre de mailles et types : 1 HEXA8

3.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 104), la contrainte SIZZ, la déformation de fluage propre EPZZ ainsi que 2 variables internes V7 et V22 correspondant respectivement à la déformation déviatorique réversible suivant zz et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes).

Champs	Composante	Point	Valeur de référence	Type de référence
SIEF_ELGA	SIZZ	Point de Gauss 1	1.80000E+00	NON_REGRESSION
VARI_ELGA	V5	Point de Gauss 1	3.10881E-05	NON_REGRESSION
VARI_ELGA	V22	Point de Gauss 1	1.54698E-05	NON_REGRESSION
EPSP_ELGA	EPYY	Point de Gauss 1	5.57153E-05	NON_REGRESSION

On teste par ailleurs le poids du point de Gauss 1.

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
COOR_ELGA	W	Point de Gauss 1	0.25	ANALYTIQUE	1e-7%

Date: 10/10/2012 Page: 5/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation B 4

4.1 Caractéristiques de la modélisation

La modélisation est axisymétrique (AXIS).

4.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles et types : 1 QUAD4

4.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 104), la contrainte SIYY, la déformation de fluage propre EPYY ainsi que 2 variables internes V5 et V22 correspondant respectivement à la déformation déviatorique réversible suivant yy et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes).

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
SIEF_ELGA	SIZZ	Point de Gauss 1	1.80000E+00	NON_REGRESSION	0.01%
VARI_ELGA	V5	Point de Gauss 1	3.10881E-05	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	1.54698E-05	NON_REGRESSION	0.01%
EPSP_ELGA	EPYY	Point de Gauss 1	5.57153E-05	NON_REGRESSION	0.01%

On retrouve les mêmes résultats qu'en 3 dimensions.

Date: 10/10/2012 Page: 6/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation C 5

5.1 Caractéristiques de la modélisation

La modélisation est en contraintes planes (C PLAN).

5.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles et types : 1 QUAD4

5.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 104), la contrainte SIYY, la déformation de fluage propre EPYY ainsi que 2 variables internes V5 et V22 correspondant respectivement à la déformation déviatorique réversible suivant yy et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes).

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
SIEF ELGA	SIZZ	Point de Gauss 1	1.80000E+00	NON REGRESSION	0.01%
VARI_ELGA	V5	Point de Gauss 1	3.10881E-05	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	1.54698E-05	NON_REGRESSION	0.01%
EPSP_ELGA	EPYY	Point de Gauss 1	5.57153E-05	NON_REGRESSION	0.01%

On teste par ailleurs le poids du point de Gauss 1.

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
COOR_ELGA	M	Point de Gauss 1	0.25	ANALYTIQUE	1e-7%

On retrouve les mêmes résultats qu'en 3 dimensions.

Date: 10/10/2012 Page: 7/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation D 6

6.1 Caractéristiques de la modélisation

La modélisation est 3D.

6.2 Caractéristiques du maillage

Nombre de nœuds : 8

Nombre de mailles et types : 1 HEXA8

6.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME_ORDRE 202), la contrainte SIZZ, ainsi que 2 variables internes V7 et V22 correspondant respectivement à la déformation déviatorique réversible suivant zz et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes). On teste également la valeur du déplacement au nœud N5.

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
SIEF_ELGA	SIXX	Point de Gauss 1	1.38880E +00	NON_REGRESSION	0.01%
DEPL	DX	N5	6.635E-5	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	5.607E-2	NON_REGRESSION	0.01%
VARI_ELGA	V7	Point de Gauss 1	1.0145E-5	NON_REGRESSION	0.01%

Date: 10/10/2012 Page: 8/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation E 7

7.1 Caractéristiques de la modélisation

La modélisation est 2D en déformations planes D PLAN.

7.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles : 1 QUAD 4

7.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 85), la contrainte SIXX, ainsi que 2 variables internes \lor 3 et \lor 22 correspondant respectivement à la déformation déviatorique réversible suivant XX et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes). On teste également la valeur du déplacement au nœud NI.

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
SIEF_ELGA	SIXX	Point de Gauss 1	1.38880E +00	NON_REGRESSION	0.01%
DEPL	DX	NI	-6.813E-3	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	7.466E-2	NON_REGRESSION	0.01%
VARI_ELGA	V3	Point de Gauss 1	1.015E-5	NON_REGRESSION	0.01%

Date: 10/10/2012 Page: 9/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation F 8

8.1 Caractéristiques de la modélisation

Modélisation en contraintes planes C PLAN.

8.2 Caractéristiques du maillage

Nombre de nœuds : 4

Nombre de mailles: 1 QUAD 4

8.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 85), la contrainte SIXX, ainsi que 2 variables internes \vee 3 et \vee 22 correspondant respectivement à la déformation déviatorique réversible suivant XX et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes). On teste également la valeur du déplacement au nœud $\,NI\,$.

Champs	Composante	Point	Valeur de	Type de	Toléranc
			référence	référence	е
SIEF_ELGA	SIXX	Point de Gauss 1	1.38880E +00	NON_REGRESSION	0.01%
DEPL	DX	NI	-6.5657E-3	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	4.2817E-2	NON_REGRESSION	0.01%
VARI_ELGA	V3	Point de Gauss 1	9.4824E-6	NON_REGRESSION	0.01%

Date: 10/10/2012 Page: 10/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation G 9

9.1 Caractéristiques de la modélisation

Modélisation non-locale 3D GRAD EPSI.

9.2 Caractéristiques du maillage

Nombre de nœuds : 20

Nombre de mailles: 1 maille HEXA 20

9.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME_ORDRE 202), la contrainte SIZZ, ainsi que 2 variables internes V7 et V22 correspondant respectivement à la déformation déviatorique réversible suivant zz et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes). On teste également la valeur du déplacement au nœud N5.

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
SIEF_ELGA	SIXX	Point de Gauss 1	1.38880E +00	NON_REGRESSION	0.01%
DEPL	DZ	N5	6.633E-05	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	5.5810E-2	NON_REGRESSION	0.01%
VARI_ELGA	V7	Point de Gauss 1	1.0145E-05	NON_REGRESSION	0.01%

Version default

Titre: SSNV169 - Couplage fluage - endommagement

Date: 10/10/2012 Page: 11/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation H 10

10.1 Caractéristiques de la modélisation

Modélisation non-locale 2D en déformation planes D PLAN GRAD EPSI.

10.2 Caractéristiques du maillage

Nombre de nœuds : 8

Nombre de mailles: 1 QUAD 8

10.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 85), la contrainte SIXX, ainsi que 2 variables internes \vee 3 et \vee 22 correspondant respectivement à la déformation déviatorique réversible suivant XX et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes). On teste également la valeur du déplacement au nœud NI.

Champs	Composante	Point	Valeur de référence	Type de référence	Tolérance
SIEF_ELGA	SIXX	Point de Gauss 1	1.38880E +00	NON_REGRESSION	0.01%
DEPL	DX	N1	3.2017E-03	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	0.0	NON_REGRESSION	0.01%
VARI_ELGA	V3	Point de Gauss 1	1.0653E-05	NON_REGRESSION	0.01%

Date: 10/10/2012 Page: 12/13 Responsable: Marina BOTTONI Clé: V6.04.169 Révision: 9650

Modélisation I 11

Caractéristiques de la modélisation

Modélisation non-locale en contraintes planes C PLAN GRAD EPSI.

11.2 Caractéristiques du maillage

Nombre de nœuds : 8

Nombre de mailles: 1 QUAD 8

11.3 Grandeurs testées et résultats

On teste au dernier pas de temps (NUME ORDRE 85), la contrainte SIXX, ainsi que 2 variables internes \vee 3 et \vee 22 correspondant respectivement à la déformation déviatorique réversible suivant XX et la valeur de l'endommagement. Ces grandeurs sont observées sur le premier point de Gauss (tous les champs étant uniformes). On teste également la valeur du déplacement au nœud N2.

Champs	Composante	Point	Valeur de référence	Type de référence	Toléranc e
SIEF_ELGA	SIXX	Point de Gauss 1	1.38880E +00	NON_REGRESSION	0.01%
DEPL	DX	N2	3.1603E-03	NON_REGRESSION	0.01%
VARI_ELGA	V22	Point de Gauss 1	0.0	NON_REGRESSION	0.01%
VARI_ELGA	V3	Point de Gauss 1	9.1621E-06	NON_REGRESSION	0.01%

Responsable : Marina BOTTONI

Date : 10/10/2012 Page : 13/13 Clé : V6.04.169 Révision : 9650

12 Synthèse

Tous ces tests sont des tests de non-régression, qui valident l'implantation des modèles d'un point de vue informatique et pas physique. Ainsi, sur des tests d'enceinte, il a été remarqué que le couplage du modèle <code>ENDO_ISOT_BETON</code> avec <code>BETON_UMLV_FP</code> dans la version actuelle surestimait beaucoup l'endommagement.

Par ailleurs, on tient à avertir l'utilisateur, que le couplage actuel du modèle de MAZARS avec BETON_UMLV_FP est explicite et est donc sensible à la taille des pas de temps utilisé. Une étude de convergence est donc indispensable.