

Responsable : Sylvie MICHEL-PONNELLE

Date : Page : 1/8 19/08/2015

Clé : V6.04.165 Révision

13794

FORMA42 - Travaux pratiques de la formation « Génie Civil » : mise en tension d'une poutre précontrainte à section variable

Résumé:

Ce test 3D a pour but de mettre en œuvre les deux techniques de mise en tension de câbles de précontrainte et de comparer les solutions ainsi obtenues.

Dans la modélisation A , tous les câbles sont mis en tension simultanément dès le début du calcul en utilisant simplement l'opérateur STAT NON LINE.

Dans les modélisations B et C l'idée est d'utiliser l'opérateur CALC_PRECONT. Dans le premier cas, tous les câbles sont mis en tension simultanément, dans le second cas, le phasage de la mise en précontrainte est modélisé.

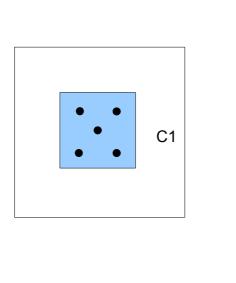
Dans tous les cas, les conditions de liaisons entre le câble et le béton ainsi que le calcul des tensions selon le BPEL91 sont effectuées grâce à l'opérateur DEFI CABLE BP.

Lorsque le TP est réalisé en temps limité, il peut être judicieux de partir de la modélisation A, et de ne réaliser que les modélisations B et C.

Titre: FORMA42 - Travaux pratiques de la formation « Géni[...] Date : Page : 2/8

19/08/2015

Clé: V6.04.165 Révision Responsable: Sylvie MICHEL-PONNELLE


13794

Problème de référence

Géométrie

On considère une poutre en béton armé de section carré, composée de deux tronçons de 10 mètres de longueur, ayant respectivement un et quatre mètres carré de section. La poutre est verticale, la plus faible section en bas. Elle est encastrée à sa base, et contient 5 câbles de précontrainte rectilignes. Les cinq câbles qui traversent toute la longueur de la poutre sont situés comme sur le plan ci-dessous :

La section de chaque câble est de $25 cm^2$.

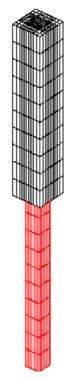


Figure 1: description du maillage utilisé

1.2 Propriétés des matériaux

Matériau béton constituant la poutre :

 $E_b = 4.10^4 MPa$ module d'Young:

coefficient de Poisson: $\nu = 0.2$

masse volumique: $\rho = 2500 \, kg/m^3$

Matériau acier constituant le câble :

 $E_c = 1,9310^5 MPa$ module d'Young:

coefficient de Poisson: v = 0.3

masse volumique: $\rho = 7850 \, kg \, / m^3$

Caractéristique concernant la mise en tension des câbles :

recul d'ancrage : 1 mm

coefficient de frottement linéaire : $0.0015 \, m^{-1}$

Date 19/08/2015

: Page : 3/8 015

Clé : V6.04.165 Révision

Responsable : Sylvie MICHEL-PONNELLE

e : V6.04.165 Revision 13794

force de tension à l'extrémité d'un câble : 3,75 10⁶ N

• âge de décoffrage : 150 jours

• âge de mise en tension du premier câble : 300 jours

1.3 Conditions aux limites et chargements

La base de la poutre est bloquée dans la direction Z. Les deux mouvements de translation par rapport à OX et OY sont bloqués ainsi que le mouvement de rotation autour de OZ. La séquence de chargement est la suivante :

- à 300 jours, mise en tension de 2 câbles (1 et 2) par leur extrémité inférieure,
- à 450 jours, mise en tension de 2 câbles supplémentaires (3 et 4) toujours par leur extrémité inférieure,
- à 600 jours, mise en tension du dernier câble (5) par ses deux extrémités.

La poutre est également soumise à la pesanteur.

19/08/2015

Clé : V6.04.165 Révision

13794

: Page : 4/8

Responsable : Sylvie MICHEL-PONNELLE

2 Modélisation A: mise en tension de la poutre sans prise en compte du phasage avec STAT NON LINE

2.1 Mise en œuvre du TP

Dans cette partie, on ne modélise pas le phasage, tous les chargements sont appliqués en un pas de temps.

- Importer le maillage au format MED et le visualiser
- Construire le fichier de commande :
 - ◆ Lire le maillage au format med : LIRE MAILLAGE
 - Création de groupes de nœuds à partir de groupes de mailles : DEFI_GROUP sur les groupes de mailles qui représentent les câbles ('CAB1', 'CAB2'...) et sur les groupes 'SU3', 'PP'.
 - ◆ Modélisation mécanique 3D pour le groupe de maille volumique 'VOLTOT' (la poutre complète) et mécanique de type BARRE pour les groupes de mailles câbles ('CAB1', 'CAB2', …) : AFFE MODELE.
 - ullet Affectation diamètres des câbles, $R\!=\!2.8209\,10^{-2}\,m$, AFFE_CARA_ELEM, motclef BARRE.
 - ♦ Création d'un matériau béton ($E\!=\!4.E10\,MPa$, $v\!=\!0.2$, $\rho\!=\!2500\,kg/m^3$) : DEFI MATERIAU avec mot-clef ELAS et BPEL BETON (fluage/retrait par défaut).
 - ♦ Création d'un matériau câble ($E\!=\!1.93E11\,MPa$, $V\!=\!0.3$, $\rho\!=\!7850\,kg/m^3$). Utiliser une loi élastique et les spécifications de précontrainte réglementaires (mot-clefs <code>BPEL_ACIER</code> avec <code>F_PRG=1.94E11</code>, <code>FROT_COURB=0</code>, <code>FROT_LINE=1.510^{-3}</code>).
 - ◆ Affectation du matériau béton à 'VOLTOT' et du matériau acier aux câbles : AFFE MATERIAU.
 - ◆ Définitions des conditions aux limites (chargements, blocages) : AFFE_CHAR_MECA :
 - DX = 0 sur le groupe de nœuds 'PY' :
 - DY = 0 sur le groupe de nœuds 'PX';
 - DX, DY = 0 sur le groupe de nœuds 'PP' précédemment créé ;
 - DZ=0 sur le groupe de nœuds 'SU3';
 - renseigner la pesanteur (mot-clef PESANTEUR).
 - Définition des câbles de précontrainte : DEFI_CABLE_BP. Pour tous les câbles, adopter une tension initiale de 3.7510⁶ N et un recul d'ancrage de 0.001 m ; l'ancrage actif est celui à l'extrémité étroite de la poutre (ex. 'PC1D' pour le premier câble), le passif à l'extrémité large (ex. 'PC1F' pour le premier câble).
 - ◆ AFFE_CHAR_MECA pour définir la relation entre les câbles et le béton. Attention à bien établir la relation cinématique entre câbles et béton (RELA_CINE='OUI') et le chargement lié à la précontrainte (SIGM BPEL='OUI').
 - ◆ définir la liste d'instant qui sera utilisée pour résoudre le problème mécanique à l'aide de DEFI LIST REEL.
 - ◆ STAT_NON_LINE pour le calcul mécanique. Le béton et les câbles sont élastiques.
- Calculer avec CALC_CHAMP, les variables que vous souhaitez post-traiter avec Salomé (a minima les contraintes) et les imprimer au format MED.
- Récupérer les efforts qui vont être appliqués dans le câble 1 à l'aide de la commande RECU TABLE. L'imprimer.

Date 19/08/2015

Clé : V6.04.165 Révision

13794

: Page : 5/8

Responsable : Sylvie MICHEL-PONNELLE

• Récupérer les efforts dans les différents câbles après mise en tension des câbles de précontrainte à l'aide de POST_RELEVE_T. L'imprimer.

- Pour comparer plus facilement les courbes, il est conseillé ensuite de tracer sur un même graphique la courbe de tension en fonction de l'abscisse curviligne (1) tel que définie dans l'opérateur DEFI_CABLE_BP, (2) au pas initial et au pas de temps final dans la structure de données résultats issue de STAT_NON_LINE. Pour cela, utiliser l'opérateur RECU_FONCTION puis IMPR_FONCTION (FORMAT='XMGRACE').
- Comparer les courbes. Que remarquez-vous ?
- Vous pouvez ensuite varier les paramètres en entrée sur le calcul de la tension des câbles : recul d'ancrage, ancrages actifs/passifs, perte par relaxation et comparer les tensions dans les câbles.

2.2 Grandeurs testées et résultats

On teste la tension dans le câble 1 en plusieurs nœuds. La référence a été obtenue via un calcul CASTEM à $t\!=\!600\mathrm{s}$.

Identification (noeud/maille)	Type de référence	Valeur de référence (N)	Tolérance (%)
N1 - M5655	'SOURCE_EXTERNE'	3,519.10 ⁶ N	3,00%
N6 - M5660	'SOURCE_EXTERNE'	3,546.10 ⁶ N	3,00%
N11 - M5664	'SOURCE_EXTERNE'	3,597.10 ⁶ N	3,50%
N16 - M5670	'SOURCE_EXTERNE'	3,635.10 ⁶ N	1.00%
N101 - M5674	'SOURCE_EXTERNE'	3,614.10 ⁶ N	6,00%

Date 19/08/2015

: Page : 6/8

Clé: V6.04.165 Révision

13794

3 Modélisation B: mise en tension de la poutre sans prise en compte du phasage avec CALC PRECONT

3.1 Mise en œuvre du TP

Responsable: Sylvie MICHEL-PONNELLE

Il s'agit ici de reprendre l'étude précédente mais de réaliser la mise en tension à l'aide de l'opérateur CALC PRECONT et plus de STAT NON LINE.

Les changement à opérer sont les suivants :

- modifier AFFE CHAR MECA de façon à ne plus chercher à appliquer la précontrainte (SIGM BPEL='NON')
- changer STAT NON LINE en CALC PRECONT. Supprimer le chargement lié aux câbles de précontrainte, et renseigner le mot-clef CABLE BP.

Que remarquez-vous sur le profil de tension final ?

Grandeurs testées et résultats 3.2

On teste la tension dans le câble 1 en plusieurs nœuds. La référence a été obtenue via un calcul CASTEM à t = 600s.

Identification (noeud/maille)	Type de référence	Valeur de référence (N)	Tolérance (%)
N1 - M5655	'SOURCE_EXTERNE'	3,519.10 ⁶ N	4,00%
N6 - M5660	'SOURCE_EXTERNE'	3,546.10 ⁶ N	4,00%
N11 - M5664	'SOURCE_EXTERNE'	3,597.10 ⁶ N	3,00%
N16 - M5670	'SOURCE_EXTERNE'	3,635.10 ⁶ N	1.00%
N101 - M5674	'SOURCE_EXTERNE'	3,614.10 ⁶ N	1.00%

Date 19/08/2015

/08/2015

Clé : V6.04.165 Révision 13794

: Page : 7/8

4 Modélisation C : modélisation du phasage de mise en précontrainte

4.1 Mise en œuvre du TP

Responsable: Sylvie MICHEL-PONNELLE

Il s'agit maintenant de reprendre l'étude précédente mais de modéliser le phasage de précontrainte. Celui-ci est le suivant :

- Au début, les câbles ne sont pas encore en place (il n'y a que la gaine), par contre il y a l'effet de la pesanteur sur le béton.
- Les câbles 'CAB1' et 'CAB2' sont mis en tension à l'instant 300 jours (les autres câbles étant inactifs !!).
- Les câbles 'CAB3' et 'CAB4' sont mis en tension à l'instant 450 jours. A 600 jours ; on met en tension le câble 'CAB5'.

Modifier le fichier de commande en conséquence et comparer les profils de tensions dans les câbles par rapport aux cas précédents.

Les actions / commandes à utiliser :

- Dupliquer les DEFI_CABLE_BP si nécessaire pour pouvoir tendre séparément les 3 groupes de câbles. Faites de même pour les chargements associés à ces câbles. Ces chargements ne doivent comporter que les liaisons cinématiques.
- Modification de la liste d'instants pour le calcul de la précontrainte : DEFI_LIST_REEL, valeurs (0,150,300,450,600) jours.
- Faites un premier STAT_NON_LINE pour le calcul de la pesanteur (1 pas de temps).
 Attention, pour ne pas prendre en compte les câbles, il convient de leur affecter la loi de comportement SANS, qui revient à appliquer un module d'Young nul.
- Procéder ensuite à 3 appels à CALC_PRECONT pour la mise en tension successive des câbles. Les conditions aux limites changent dans les 3 cas

Reprenez les mêmes post-traitements que précédemment mais en traçant les courbes aux différents instants ou a minima à t=600 jours.

Observez les différences obtenues sur les tensions dans les câbles et sur l'état de contrainte dans le béton.

4.2 Grandeurs testées et résultats

On teste la tension dans le câble 1 en plusieurs nœuds. La référence a été obtenue via un calcul CASTEM à t = 600s.

Identification (noeud/maille)	Type de référence	Valeur de référence (N)	Tolérance (%)
N1 - M5655	'SOURCE_EXTERNE'	3,519.10 ⁶ N	1.00%
N6 - M5660	'SOURCE_EXTERNE'	3,546.10 ⁶ N	1.00%
N11 - M5664	'SOURCE_EXTERNE'	3,597.10 ⁶ N	1.00%
N16 - M5670	'SOURCE_EXTERNE'	3,635.10 ⁶ N	1.00%
N101 - M5674	'SOURCE_EXTERNE'	3,614.10 ⁶ N	1.00%

Date 19/08/2015

Clé : V6.04.165 Révision

: Page : 8/8

13794

5 Synthèse des résultats

Responsable: Sylvie MICHEL-PONNELLE

Ce test permet de tester trois manières différentes d'imposer la mise en tension des câbles de précontrainte. Chacune de ces manières conduit à des profils de tension dans les câbles différents et donc à des contraintes différentes dans le béton. L'utilisateur doit être conscient des différences.

Par ailleurs, lorsque l'on associe ce calcul de la tension du câble à un calcul non-linéaire, il est important de ne pas cumuler les pertes. Ainsi, si le béton est modélisé à l'aide d'une loi visco-élastique, il ne faudra pas prendre en compte les pertes par fluage du béton dans le calcul de la tension du câble.

Il faut noter également que la tension est loin d'être uniforme, c'est tout l'intérêt de ces opérateurs par rapport à imposer une précontrainte sous forme d'une pré-déformation ou d'un champ thermique fictif.